【題目】為了解本校九年級(jí)學(xué)生期末數(shù)學(xué)考試情況,小亮在九年級(jí)隨機(jī)抽取了一部分學(xué)生的期末數(shù)學(xué)成績(jī)?yōu)闃颖,分為A(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答以下問(wèn)題:
(1)這次隨機(jī)抽取的學(xué)生共有多少人?
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)這個(gè)學(xué)校九年級(jí)共有學(xué)生1200人,若分?jǐn)?shù)為80分(含80分)以上為優(yōu)秀,請(qǐng)估計(jì)這次九年級(jí)學(xué)生期末數(shù)學(xué)考試成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)大約有多少?
【答案】(1)40人;(2)見(jiàn)解析;(3)480人
【解析】
試題(1)抽查人數(shù)可由C等所占的比例為50%,根據(jù)總數(shù)=某等人數(shù)÷比例來(lái)計(jì)算;
(2)可由總數(shù)減去A、C、D的人數(shù)求得B等的人數(shù),再補(bǔ)全條形統(tǒng)計(jì)圖;
(3)用樣本估計(jì)總體.用總?cè)藬?shù)1200乘以樣本中測(cè)試成績(jī)等級(jí)在80分(含80分)以上的學(xué)生所占百分比即可.
試題解析:解:(1)這次隨機(jī)抽取的學(xué)生共有:20÷50%=40(人);
(2)B等級(jí)的人數(shù)是:40×27.5%=11人,如圖:
(3)根據(jù)題意得:×1200=480(人),
答:這次九年級(jí)學(xué)生期末數(shù)學(xué)考試成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)大約有480人
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中 ,∠A=∠B,D、E是邊AB上的點(diǎn),DG∥AC,EF∥BC,DG、EF相 交于點(diǎn)H.
(1)∠HDE與∠HED是否相等?并說(shuō)明理由.
解:∠HDE=∠HED.理由如下:
∵DG∥AC(已知)
∴ = ( )
∵ EF∥BC (已知)
∴ = ( )
又∵∠A=∠B (已知)
∴ = ( ).
(2)如果∠C=90°,DG、 EF有何位置關(guān)系?并仿照 (1)中的解答方法說(shuō)明理由.
解: .理由如下:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】汽車專賣(mài)店銷售某種型號(hào)的汽車.已知該型號(hào)汽車的進(jìn)價(jià)為10萬(wàn)元/輛,銷售一段時(shí)間后發(fā)現(xiàn):當(dāng)該型號(hào)汽車售價(jià)定為15萬(wàn)元/輛時(shí),平均每周售出8輛;售價(jià)每降低0.5萬(wàn)元,平均每周多售出2輛.
(1)若要平均每周售出汽車不低于15輛,該汽車的售價(jià)最多定為多少萬(wàn)元?
(2)該店計(jì)劃下調(diào)售價(jià),盡可能增加銷量,減少庫(kù)存,但要確保平均每周的銷售利潤(rùn)為40萬(wàn)元,每輛汽車的售價(jià)定為多少合適?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,某校學(xué)生會(huì)組織了一次全校1200名學(xué)生參加的“漢字聽(tīng)寫(xiě)”大賽,并設(shè)成績(jī)優(yōu)勝獎(jiǎng).
賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分.為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中100名學(xué)生的成績(jī)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
成績(jī)x/分 | 頻數(shù) | 頻率 |
50≤x<60 | 10 | 0.10 |
60≤x<70 | 25 | 0.25 |
70≤x<80 | 30 | b |
80≤x<90 | a | 0.20 |
90≤x≤100 | 15 | 0.15 |
成績(jī)?cè)?/span>70≤x<80這一組的是:
70 70 71 71 71 72 72 73 73 73 73 75 75 75 75 76 76 76 76 76 76 76 76 77 77 78 78 78 79 79
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:
(1)a= ,b= ;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)這次比賽成績(jī)的中位數(shù)是 ;
(4)若這次比賽成績(jī)?cè)?/span>78分以上(含78分)的學(xué)生獲得優(yōu)勝獎(jiǎng),則該校參加這次比賽的1200名學(xué)生中獲優(yōu)勝獎(jiǎng)的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A(1,-4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上。
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線F的解析式為:y=2x2﹣4nx+2n2+n,n為實(shí)數(shù).
(1)求拋物線F頂點(diǎn)的坐標(biāo)(用n表示),并證明:當(dāng)n變化時(shí)頂點(diǎn)在一條定直線l上;
(2)如圖,射線m是(1)中直線l與x軸正半軸夾角的平分線,點(diǎn)M,N都在射線m上,作MA⊥x軸、NB⊥x軸,垂足分別為點(diǎn)A、點(diǎn)B(點(diǎn)A在點(diǎn)B左側(cè)),當(dāng)MA+NB=MN時(shí),試判斷是否為定值,若是,請(qǐng)求出定值;若不是,說(shuō)明理由.
(3)已知直線y=kx+b與拋物線F中任意一條都相截,且截得的長(zhǎng)度都為,求這條直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,以點(diǎn)AB為直徑的⊙O分別與AC,BC交于點(diǎn)E,D,且BD=CD.
(1)求證:∠B=∠C .
(2)過(guò)點(diǎn)D作DF⊥OD,過(guò)點(diǎn)F作FH⊥AB.若AB=5,CD=,求AH的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,四邊形ABCD為矩形,點(diǎn)O是AC的中點(diǎn),過(guò)點(diǎn)O的一直線分別與AB、CD交于點(diǎn)E、F,連接BF交AC于點(diǎn)M,連接DE、BO,若∠COB=60°,FO=FC,則下列結(jié)論:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四邊形EBFD是菱形;④MB:OE=3:2,其中正確結(jié)論是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點(diǎn)E,交CB的延長(zhǎng)線于點(diǎn)F,連接AF,BE.
(1)求證:△AGE≌△BGF;
(2)試判斷四邊形AFBE的形狀,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com