【題目】如圖,正方形ABCD中,點E,F分別在邊AB,BC上,AF=DE,AF和DE相交于點G.

(1)觀察圖形,寫出圖中所有與∠AED相等的角;
(2)選擇圖中與∠AED相等的任意一個角,并加以證明.

【答案】
(1)解:由題圖可知,∠DAG,∠AFB,∠CDE與∠AED相等 .
(2)解:(答案不唯一)選擇∠DAG=∠AED,證明如下:
由正方形ABCD得
∠DAB=∠B=90°,AD=AB.
在Rt△DAE與Rt△ABF中,

∴Rt△DAE≌Rt△ABF(HL).
∴∠ADE=∠BAF.
∵∠DAG+∠BAF=90°,∠ADE+∠AED=90°,
∴∠DAG=∠AED
【解析】(1)根據(jù)正方形的性質可以得出∠DAB=∠B=90°,AD=AB,然后利用HL判斷出Rt△DAE≌Rt△ABF,根據(jù)全等三角形對應角相等得出∠ADE=∠BAF ,∠DEA=∠AFB ,然后根據(jù)等角的余角相等得出∠DAG=∠AED ,根據(jù)同角的余角相等得出∠CDG=∠DAG,從而利用等量代換得出∠CDG=∠AED ;
(2)此題是一道開放性的命題,一般選擇自己十拿九穩(wěn)的結論進行證明:根據(jù)正方形的性質可以得出∠DAB=∠B=90°,AD=AB,然后利用HL判斷出Rt△DAE≌Rt△ABF,根據(jù)全等三角形對應角相等得出∠ADE=∠BAF ,,然后根據(jù)等角的余角相等得出∠DAG=∠AED 。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在同一個平面內,直線a、b相交于點P,a∥c,b與c的位置關系是(  )
A.平行
B.相交
C.重合
D.平行或相交

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABx軸,A-2,4),AB5,則B點橫縱坐標之和為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情況,根據(jù)以往的學習經(jīng)驗,他想到了方程與函數(shù)的關系,一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b(k≠0)的解,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交點的橫坐標即為一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函數(shù)y=x2﹣2x﹣3的圖象與x軸的交點為(﹣1,0)和(3,0),交點的橫坐標﹣1和3即為x2﹣2x﹣3=0的解.

根據(jù)以上方程與函數(shù)的關系,如果我們直到函數(shù)y=x3+2x2﹣x﹣2的圖象與x軸交點的橫坐標,即可知方程x3+2x2﹣x﹣2=0的解.

佳佳為了解函數(shù)y=x3+2x2﹣x﹣2的圖象,通過描點法畫出函數(shù)的圖象.

x

﹣3

﹣2

﹣1

0

1

2

y

﹣8

0

m

﹣2

0

12

(1)直接寫出m的值,并畫出函數(shù)圖象;

(2)根據(jù)表格和圖象可知,方程的解有   個,分別為   ;

(3)借助函數(shù)的圖象,直接寫出不等式x3+2x2>x+2的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九邊形的內角和是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,點CAB的延長線上,CDO相切于點D,CEAD,交AD的延長線于點E

1)求證:BDC=A;

2)若CE=4,DE=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校舉辦八年級學生數(shù)學素養(yǎng)大賽,比賽共設四個項目:七巧板拼圖,趣題巧解,數(shù)學應用,魔方復原,每個項目得分都按一定百分比折算后記入總分,下表為甲,乙,丙三位同學得分情況(單位:分)

七巧板拼圖

趣題巧解

數(shù)學應用

魔方復原

66

89

86

68

66

60

80

68

66

80

90

68


(1)比賽后,甲猜測七巧板拼圖,趣題巧解,數(shù)學應用,魔方復原這四個項目得分分別按10%,40%,20%,30%折算△記入總分,根據(jù)猜測,求出甲的總分;
(2)本次大賽組委會最后決定,總分為80分以上(包含80分)的學生獲一等獎,現(xiàn)獲悉乙,丙的總分分別是70分,80分.甲的七巧板拼圖、魔方復原兩項得分折算后的分數(shù)和是20分,問甲能否獲得這次比賽的一等獎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10分)如圖,BD是O的直徑,點A是劣弧BC的中點,DF是O的切線交BC于點F,AD交BC于點E.

(1)求證:EF=DF;

(2)若AE=2,ED=4,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,BAD的平分線交BCE,交DC的延長線于F,BGAEG,BG=,則EFC的周長為_____________.

查看答案和解析>>

同步練習冊答案