【題目】佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情況,根據(jù)以往的學(xué)習(xí)經(jīng)驗,他想到了方程與函數(shù)的關(guān)系,一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b(k≠0)的解,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交點的橫坐標即為一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函數(shù)y=x2﹣2x﹣3的圖象與x軸的交點為(﹣1,0)和(3,0),交點的橫坐標﹣1和3即為x2﹣2x﹣3=0的解.
根據(jù)以上方程與函數(shù)的關(guān)系,如果我們直到函數(shù)y=x3+2x2﹣x﹣2的圖象與x軸交點的橫坐標,即可知方程x3+2x2﹣x﹣2=0的解.
佳佳為了解函數(shù)y=x3+2x2﹣x﹣2的圖象,通過描點法畫出函數(shù)的圖象.
x | … | ﹣3 | ﹣ | ﹣2 | ﹣ | ﹣1 | ﹣ | 0 | 1 | 2 | … | ||
y | … | ﹣8 | ﹣ | 0 | m | ﹣ | ﹣2 | ﹣ | 0 | 12 | … |
(1)直接寫出m的值,并畫出函數(shù)圖象;
(2)根據(jù)表格和圖象可知,方程的解有 個,分別為 ;
(3)借助函數(shù)的圖象,直接寫出不等式x3+2x2>x+2的解集.
【答案】(1)0;(2)3,﹣2,或﹣1或1.(3)﹣2<x<﹣1或x>1.
【解析】試題分析:(1)求出x=﹣1時的函數(shù)值即可解決問題;利用描點法畫出圖象即可;
(2)利用圖象以及表格即可解決問題;
(3)不等式x3+2x2>x+2的解集,即為函數(shù)y=x3+2x2﹣x﹣2的函數(shù)值大于0的自變量的取值范圍,觀察圖象即可解決問題.
試題解析:(1)由題意m=﹣1+2+1﹣2=0.
函數(shù)圖象如圖所示.
(2)根據(jù)表格和圖象可知,方程的解有3個,分別為﹣2,或﹣1或1.
(3)不等式x3+2x2>x+2的解集,即為函數(shù)y=x3+2x2﹣x﹣2的函數(shù)值大于0的自變量的取值范圍.
觀察圖象可知,﹣2<x<﹣1或x>1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某貨站傳送貨物的平面示意圖. 為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°. 已知原傳送帶AB長為4米.
(1)求新傳送帶AC的長度;
(2)如果需要在貨物著地點C的左側(cè)留出2米的通道,試判斷距離B點4米的貨物是否需要挪走,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩人在玩轉(zhuǎn)盤游戲時,準備了兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤A、B,每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每一個扇形內(nèi)標上數(shù)字.游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,指針所指區(qū)域的數(shù)字之和為0時,甲獲勝;數(shù)字之和為1時,乙獲勝.如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一區(qū)域為止.
(1)用畫樹狀圖或列表法求乙獲勝的概率;
(2)這個游戲規(guī)則對甲、乙雙方公平嗎?請判斷并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥DE,AC∥DF,AC=DF,下列條件中,不能判斷△ABC≌△DEF的是( )
A.AB=DE
B.∠B=∠E
C.EF=BC
D.EF∥BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E,F分別在邊AB,BC上,AF=DE,AF和DE相交于點G.
(1)觀察圖形,寫出圖中所有與∠AED相等的角;
(2)選擇圖中與∠AED相等的任意一個角,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某微生物的直徑為0.000 005 035m,用科學(xué)記數(shù)法表示該數(shù)為( )
A.5.035×10﹣6
B.50.35×10﹣5
C.5.035×106
D.5.035×10﹣5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com