【題目】如圖,點A(1,6)和點M(m,n)都在反比例函數(shù)y= (x>0)的圖象上,
(1)k的值為;
(2)當m=3,求直線AM的解析式;
(3)當m>1時,過點M作MP⊥x軸,垂足為P,過點A作AB⊥y軸,垂足為B,試判斷直線BP與直線AM的位置關系,并說明理由.
【答案】
(1)6
(2)
解:將x=3代入反比例解析式y(tǒng)= 得:y=2,即M(3,2),
設直線AM解析式為y=ax+b,
把A與M代入得: ,
解得:a=﹣2,b=8,
∴直線AM解析式為y=﹣2x+8;
(3)
解:直線BP與直線AM的位置關系為平行,理由為:
當m>1時,過點M作MP⊥x軸,垂足為P,過點A作AB⊥y軸,垂足為B,
∵A(1,6),M(m,n),且mn=6,即n= ,
∴B(0,6),P(m,0),
∴k直線AM= = = =﹣ =﹣ ,
k直線BP= =﹣ ,
即k直線AM=k直線BP,
則BP∥AM.
【解析】解:(1)將A(1,6)代入反比例解析式得:k=6;
所以答案是:6;
【考點精析】通過靈活運用反比例函數(shù)的概念和反比例函數(shù)的圖象,掌握形如y=k/x(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù).自變量x的取值范圍是x不等于0的一切實數(shù),函數(shù)的取值范圍也是一切非零實數(shù);反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=18,BC=12,正方形DEFG的頂點E,F(xiàn)在△ABC內,頂點D,G分別在AB,AC上,AD=AG,DG=6,則點F到BC的距離為( )
A.1
B.2
C.12 ﹣6
D.6 ﹣6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c,其圖象拋物線交x軸于點A(1,0),B(3,0),交y軸于點C,直線l過點C,且交拋物線于另一點E(點E不與點A、B重合).
(1)求此二次函數(shù)關系式;
(2)若直線l1經過拋物線頂點D,交x軸于點F,且l1∥l,則以點C、D、E、F為頂點的四邊形能否為平行四邊形?若能,求出點E的坐標;若不能,請說明理由.
(3)若過點A作AG⊥x軸,交直線l于點G,連接OG、BE,試證明OG∥BE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司為了解員工對“六五”普法知識的知曉情況,從本公司隨機選取40名員工進行普法知識考查,對考查成績進行統(tǒng)計(成績均為整數(shù),滿分100分),并依據統(tǒng)計數(shù)據繪制了如下尚不完整的統(tǒng)計表.解答下列問題:
組別 | 分數(shù)段/分 | 頻數(shù)/人數(shù) | 頻率 |
1 | 50.5~60.5 | 2 | a |
2 | 60.5~70.5 | 6 | 0.15 |
3 | 70.5~80.5 | b | c |
4 | 80.5~90.5 | 12 | 0.30 |
5 | 90.5~100.5 | 6 | 0.15 |
合計 | 40 | 1.00 |
(1)表中a= , b= , c=;
(2)請補全頻數(shù)分布直方圖;
(3)該公司共有員工3000人,若考查成績80分以上(不含80分)為優(yōu)秀,試估計該公司員工“六五”普法知識知曉程度達到優(yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,BC=15,斜邊AB的垂直平分線與∠CAB的平分線都交BC于D點,則點D到斜邊AB的距離為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學舉辦運動會,在1500米的項目中,參賽選手在200米的環(huán)形跑道上進行,如圖記錄了跑得最快的一位選手與最慢的一位選手的跑步全過程(兩人都跑完了全程),其中x代表的是最快的選手全程的跑步時間,y代表的是這兩位選手之間的距離,下列說不合理的是( 。
A. 出發(fā)后最快的選手與最慢的選手相遇了兩次
B. 出發(fā)后最快的選手與最慢的選手第一次相遇比第二次相遇的用時短
C. 最快的選手到達終點時,最慢的選手還有415米未跑
D. 跑的最慢的選手用時4′46″
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ABC=90°,AB=BC,D為斜邊AC延長線上一點,過D點作BC的垂線交其延長線于點E,在AB的延長線上取一點F,使得BF=CE,連接EF.
(1)若AB=2,BF=3,求AD的長度;
(2)G為AC中點,連接GF,求證:∠AFG+∠BEF=∠GFE.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com