【題目】某中學(xué)舉辦運(yùn)動會,在1500米的項(xiàng)目中,參賽選手在200米的環(huán)形跑道上進(jìn)行,如圖記錄了跑得最快的一位選手與最慢的一位選手的跑步全過程(兩人都跑完了全程),其中x代表的是最快的選手全程的跑步時間,y代表的是這兩位選手之間的距離,下列說不合理的是( 。

A. 出發(fā)后最快的選手與最慢的選手相遇了兩次

B. 出發(fā)后最快的選手與最慢的選手第一次相遇比第二次相遇的用時短

C. 最快的選手到達(dá)終點(diǎn)時,最慢的選手還有415米未跑

D. 跑的最慢的選手用時4′46″

【答案】D

【解析】

根據(jù)題意和函數(shù)圖象可以判斷各個選項(xiàng)中的說法是否正確,本題得以解決.

由圖象可得,

出發(fā)后最快的選手與最慢的選手相遇了兩次,故選項(xiàng)A正確,

出發(fā)后最快的選手與最慢的選手第一次相遇比第二次相遇的用時短,故選項(xiàng)B正確,

最快的選手到達(dá)終點(diǎn)時,最慢的選手還有2×200+15=415米未跑,故選項(xiàng)C正確,

跑的最快的選手用時4′46″,故選項(xiàng)D錯誤,

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:A(0,1),B(2,0),C(4,3)

(1)在直角坐標(biāo)系中描出各點(diǎn),畫出△ABC

(2)求△ABC的面積;

(3)設(shè)點(diǎn)P在坐標(biāo)軸上,且△ABP與△ABC的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(1,6)和點(diǎn)M(m,n)都在反比例函數(shù)y= (x>0)的圖象上,

(1)k的值為
(2)當(dāng)m=3,求直線AM的解析式;
(3)當(dāng)m>1時,過點(diǎn)M作MP⊥x軸,垂足為P,過點(diǎn)A作AB⊥y軸,垂足為B,試判斷直線BP與直線AM的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OA=OB,點(diǎn)PABO的角平分線的交點(diǎn),若PNPAx軸于N,延長OPABM,寫出AO,ON,PM之間的數(shù)量關(guān)系,并證明之

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD,頂點(diǎn)A(1,3)、B(1,1)、C(3,1),規(guī)定“把正方形ABCD先沿x軸翻折,再向左平移1個單位”為一次交換,如此這樣,連續(xù)經(jīng)過2016次變換后,正方形ABCD的對角線交點(diǎn)M的坐標(biāo)變?yōu)?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩地相距20km.甲、乙兩人都由A地去B地,甲騎自行車,平均速度為10km/h;乙乘汽車,平均速度為40km/h,且比甲晚1.5h出發(fā).設(shè)甲的騎行時間為x(h)(0≤x≤2)

(1)根據(jù)題意,填寫下表:

時間x(h)

A地的距離

0.5

1.8

_____

甲與A地的距離(km)

5

  

20

乙與A地的距離(km)

0

12

  

(2)設(shè)甲,乙兩人與A地的距離為y1(km)和y2(km),寫出y1,y2關(guān)于x的函數(shù)解析式;

(3)設(shè)甲,乙兩人之間的距離為y,當(dāng)y=12時,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李明從市場上買回一塊矩形鐵皮,他將此矩形鐵皮的四個角各剪去一個邊長為1米的正方形后,剩下的部分剛好能圍成一個容積為15立方米的無蓋長方體運(yùn)輸箱,且此長方體運(yùn)輸箱底面的長比寬多2米,現(xiàn)已知購買這種鐵皮每平方米需20元,問購買這張矩形鐵皮共花了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點(diǎn),過點(diǎn)DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長為2的正方形OABC在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)D是邊OA的中點(diǎn),連接CD,點(diǎn) E在第一象限,且DE⊥DC,DE=DC.以直線AB為對稱軸的拋物線過C,E兩點(diǎn).

(1)求E點(diǎn)坐標(biāo);
(2)設(shè)拋物線的解析式為y=a(x﹣h)2+k,求a,h,k;
(3)點(diǎn)M為直線AB上一動點(diǎn),點(diǎn)N為拋物線上一動點(diǎn),是否存在點(diǎn)M,N,使得以點(diǎn)M,N,D,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出滿足條件的點(diǎn)M,N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案