【題目】“保護(hù)好環(huán)境,拒絕冒黑煙”荊州市公交公司將淘汰一條線路上“冒黑煙”較嚴(yán)重的公交車(chē),計(jì)劃購(gòu)買(mǎi)型和型兩種環(huán)保節(jié)能公交車(chē)輛,若購(gòu)買(mǎi)型公交車(chē)輛,型公交車(chē)輛,共需萬(wàn)元,若購(gòu)買(mǎi)型公交車(chē)輛,型公交車(chē)輛,共需萬(wàn)元.
(1)求購(gòu)買(mǎi)購(gòu)買(mǎi)型和型公交車(chē)每輛多少錢(qián)?
(2)預(yù)計(jì)在該線路上型和型公交車(chē)每輛年均載客量分別為萬(wàn)人次和萬(wàn)人次,若該公司購(gòu)買(mǎi)型和型公交車(chē)的總費(fèi)用不超過(guò)萬(wàn)元,且確保這輛公交車(chē)在該線路上的年平均載客總和不少于萬(wàn)人次,則該公司有哪幾種購(gòu)車(chē)方案?
(3)在(2)的條件下,哪種購(gòu)車(chē)方案總費(fèi)用最少?最少費(fèi)用為多少?
【答案】(1)A型公交車(chē)100萬(wàn)元/輛,B型公交車(chē)150元/輛;(2)三種方案:①購(gòu)買(mǎi)A型公交車(chē)6輛,則B型公交車(chē)4輛;②購(gòu)買(mǎi)A型公交車(chē)7輛,則B型公交車(chē)3輛;③購(gòu)買(mǎi)A型公交車(chē)8輛,則B型公交車(chē)2輛;(3)購(gòu)買(mǎi)A型公交車(chē)8輛,則B型公交車(chē)2輛費(fèi)用最少,最少總費(fèi)用為1100萬(wàn)元.
【解析】
(1)設(shè)購(gòu)買(mǎi)A型公交車(chē)每輛需x萬(wàn)元,購(gòu)買(mǎi)B型公交車(chē)每輛需y萬(wàn)元,根據(jù)“A型公交車(chē)1輛,B型公交車(chē)2輛,共需400萬(wàn)元;A型公交車(chē)2輛,B型公交車(chē)1輛,共需350萬(wàn)元”列出方程組解決問(wèn)題;
(2)設(shè)購(gòu)買(mǎi)A型公交車(chē)m輛,則B型公交車(chē)(10m)輛,由“購(gòu)買(mǎi)A型和B型公交車(chē)的總費(fèi)用不超過(guò)1200萬(wàn)元”和“10輛公交車(chē)在該線路的年均載客總和不少于680萬(wàn)人次”列出不等式組探討得出答案即可;
(3)分別求出各種購(gòu)車(chē)方案總費(fèi)用,再根據(jù)總費(fèi)用作出判斷.
(1)設(shè)購(gòu)買(mǎi)A型公交車(chē)x萬(wàn)元/輛,B型公交車(chē)y元/輛,
由題意,得,
解得,
答:A型公交車(chē)100萬(wàn)元/輛,B型公交車(chē)150元/輛;
(2)設(shè)A型公交車(chē)m輛,則B型公交車(chē)(10m)輛,
由題意,得,
解①,得m≥6;
解②,得m≤8;
解得6≤m≤8,
所以m=6,7,8,
則(10m)=4,3,2;
三種方案:①購(gòu)買(mǎi)A型公交車(chē)6輛,則B型公交車(chē)4輛;②購(gòu)買(mǎi)A型公交車(chē)7輛,則B型公交車(chē)3輛;③購(gòu)買(mǎi)A型公交車(chē)8輛,則B型公交車(chē)2輛;
(3)①購(gòu)買(mǎi)A型公交車(chē)6輛,則B型公交車(chē)4輛:100×6+150×4=1200萬(wàn)元;
②購(gòu)買(mǎi)A型公交車(chē)7輛,則B型公交車(chē)3輛:100×7+150×3=1150萬(wàn)元;
③購(gòu)買(mǎi)A型公交車(chē)8輛,則B型公交車(chē)2輛:100×8+150×2=1100萬(wàn)元;
故購(gòu)買(mǎi)A型公交車(chē)8輛,則B型公交車(chē)2輛費(fèi)用最少,最少總費(fèi)用為1100萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分12分)如圖,Rt△中, , ,點(diǎn)為斜邊的中點(diǎn),點(diǎn)為邊上的一個(gè)動(dòng)點(diǎn).連結(jié),過(guò)點(diǎn)作的垂線與邊交于點(diǎn),以為鄰邊作矩形.
(1)如圖1,當(dāng),點(diǎn)在邊上時(shí),求DE和EF的長(zhǎng);
(2)如圖2,若,設(shè),矩形的面積為,求y關(guān)于的函數(shù)表達(dá)式;
(3)若,且點(diǎn)恰好落在Rt△的邊上,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,-4),畫(huà)出平移后對(duì)應(yīng)的△A2B2C2;
(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo);
(3)在x軸上有一點(diǎn)P,使得PA+PB的值最小,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店進(jìn)行店慶活動(dòng),決定購(gòu)進(jìn)甲、乙兩種紀(jì)念品,若購(gòu)進(jìn)甲種紀(jì)念品1件,乙種紀(jì)念品2件,需要160元;購(gòu)進(jìn)甲種紀(jì)念品2件,乙種紀(jì)念品3件,需要280元.
(1)購(gòu)進(jìn)甲乙兩種紀(jì)念品每件各需要多少元?
(2)該商場(chǎng)決定購(gòu)進(jìn)甲乙兩種紀(jì)念品100件,并且考慮市場(chǎng)需求和資金周轉(zhuǎn),用于購(gòu)買(mǎi)這些紀(jì)念品的資金不少于6300元,同時(shí)又不能超過(guò)6430元,則該商場(chǎng)共有幾種進(jìn)貨方案?
(3)若銷(xiāo)售每件甲種紀(jì)念品可獲利30元,每件乙種紀(jì)念品可獲利12元,在第(2)問(wèn)中的各種進(jìn)貨方案中,哪種方案獲利最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖1,△ABC和△ADE均為等邊三角形,點(diǎn)D在邊BC上,連接CE.請(qǐng)?zhí)羁眨?/span>
①∠ACE的度數(shù)為 ;
②線段AC、CD、CE之間的數(shù)量關(guān)系為 .
(2)拓展探究
如圖2,△ABC和△ADE均為等腰直角三角形,∠BAC=∠DAE=90°,點(diǎn)D在邊BC上,連接CE.請(qǐng)判斷∠ACE的度數(shù)及線段AC、CD、CE之間的數(shù)量關(guān)系,并說(shuō)明理由.
(3)解決問(wèn)題
如圖3,在四邊形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC與BD交于點(diǎn)E,請(qǐng)直接寫(xiě)出線段AC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F在AC上,且BD=DF.
(1)求證:CF=EB;
(2)試判斷AB與AF,EB之間存在的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰△ABC中,AD⊥BC交直線BC于點(diǎn)D,若AD=BC,則△ABC的頂角的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在校運(yùn)會(huì)之前想了解九年級(jí)女生一分鐘仰臥起坐得分情況(滿(mǎn)分為7分),在九年級(jí)500名女生中隨機(jī)抽出60名女生進(jìn)行一次抽樣摸底測(cè)試所得數(shù)據(jù)如下表:
(1)從表中看出所抽的學(xué)生所得的分?jǐn)?shù)數(shù)據(jù)的眾數(shù)是______.
A.40% B.7 C.6.5 D.5%
(2)請(qǐng)將下面統(tǒng)計(jì)圖補(bǔ)充完整.
(3)根據(jù)上述抽查,請(qǐng)估計(jì)該?荚嚪?jǐn)?shù)不低于6分的人數(shù)會(huì)有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=24,BC=12,點(diǎn)E沿BC邊從點(diǎn)B開(kāi)始向點(diǎn)C以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng);點(diǎn)F沿CD邊從點(diǎn)C開(kāi)始向點(diǎn)D以每秒4個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),如果E、F同時(shí)出發(fā),用t(0≤t≤6)秒表示運(yùn)動(dòng)的時(shí)間,當(dāng)t為何值時(shí),以點(diǎn)E、C、F為頂點(diǎn)的三角形與△ACD相似?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com