【題目】如圖,在平面直角坐標(biāo)系 xOy 中,菱形 ABOC 的頂點(diǎn) O 在坐標(biāo)原點(diǎn),邊 BO 在 x 軸的負(fù)半軸上,頂點(diǎn) C的坐標(biāo)為(﹣3,4),反比例函數(shù) y 的圖象與菱形對角線 AO 交于 D 點(diǎn),連接 BD,當(dāng) BD⊥x 軸時(shí),k的值是( )
A.B.C.﹣12D.
【答案】B
【解析】
先利用勾股定理計(jì)算出OC=5,再利用菱形的性質(zhì)得到AC=OB=OC=5,AC∥OB,則B(-5,0),A(-8,4),接著利用待定系數(shù)法確定直線OA的解析式為y=-x,則可確定D(-5,),然后把D點(diǎn)坐標(biāo)代入y=中可得到k的值.
∵C(3,4),
∴OC==5,
∵四邊形OBAC為菱形,
∴AC=OB=OC=5,AC∥OB,
∴B(5,0),A(8,4),
設(shè)直線OA的解析式為y=mx,
把A(8,4)代入得8m=4,解得m=,
∴直線OA的解析式為y=-x,
當(dāng)x=5時(shí),y=-x =,則D(5,),
把D(5,)代入y=,
∴k== .
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)黨中央“下好一盤棋,共護(hù)一江水”的號召,某治污公司決定購買甲、乙兩種型號的污水處理設(shè)備共10臺(tái).經(jīng)調(diào)查發(fā)現(xiàn):購買一臺(tái)甲型設(shè)備比購買一臺(tái)乙型設(shè)備多2萬元,購買2臺(tái)甲型設(shè)備比購買3臺(tái)乙型設(shè)備少6萬元,且一臺(tái)甲型設(shè)備每月可處理污水240噸,一臺(tái)乙型設(shè)備每月可處理污水200噸.
(1)請你計(jì)算每臺(tái)甲型設(shè)備和每臺(tái)乙型設(shè)備的價(jià)格各是多少萬元?
(2)若治污公司購買污水處理設(shè)備的資金不超過109萬元,月處理污水量不低于2080噸.
①求該治污公司有幾種購買方案;
②如果為了節(jié)約資金,請為該公司設(shè)計(jì)一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=6cm,BC=4cm,點(diǎn)D為AB的中點(diǎn).
⑴如果點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,△BPD與△CPQ是否全等,請說明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為______cm/s時(shí),在某一時(shí)刻也能夠使△BPD與△CPQ全等.
⑵若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都按逆時(shí)針方向沿△ABC的三邊運(yùn)動(dòng).求經(jīng)過多少秒后,點(diǎn)P與點(diǎn)Q第一次相遇,并寫出第一次相遇點(diǎn)在△ABC的哪條邊上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,∠A=140°,∠D=80°.
(1)如圖1,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖2,若∠ABC的角平分線BE交DC于點(diǎn)E,且BE∥AD,試求出∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用因式分解法解下列方程:
(1)(4x﹣1)(5x+7)=0.
(2)3x(x﹣1)=2﹣2x.
(3)(2x+3)2=4(2x+3).
(4)2(x﹣3)2=x2﹣9.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC,垂足為E,若線段AE=3,則四邊形ABCD的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn) A(3,3).
(1)求正比例函數(shù)和反比例函數(shù)的解析式;
(2)把直線 OA 向下平移后得到直線 l,與反比例函數(shù)的圖象交于點(diǎn) B(6,m),求 m 的值和直線 l 的解 析式;
(3)在(2)中的直線 l 與 x 軸、y 軸分別交于 C、D,求四邊形 OABC 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F.請你認(rèn)真閱讀下面關(guān)于這個(gè)圖的探究片段,完成所提出的問題.
(1)探究1:小強(qiáng)看到圖(*)后,很快發(fā)現(xiàn)AE=EF,這需要證明AE和EF所在的兩個(gè)三角形全等,但△ABE和△ECF顯然不全等(一個(gè)是直角三角形,一個(gè)是鈍角三角形),考慮到點(diǎn)E是邊BC的中點(diǎn),因此可以選取AB的中點(diǎn)M,連接EM后嘗試著去證△AEM≌EFC就行了,隨即小強(qiáng)寫出了如下的證明過程:
證明:如圖1,取AB的中點(diǎn)M,連接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵點(diǎn)E,M分別為正方形的邊BC和AB的中點(diǎn)
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分線
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小強(qiáng)繼續(xù)探索,如圖2,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上的任意一點(diǎn)”,其余條件不變,發(fā)現(xiàn)AE=EF仍然成立,請你證明這一結(jié)論.
(3)探究3:小強(qiáng)進(jìn)一步還想試試,如圖3,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC延長線上的一點(diǎn)”,其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請你完成證明過程給小強(qiáng)看,若不成立請你說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市一水果銷售公司,需將一批鮮桃運(yùn)往某地,有汽車、火車、運(yùn)輸工具可供選擇,兩種運(yùn)輸工具的主要參考數(shù)據(jù)如下:
運(yùn)輸工具 | 途中平均速度(單位:千米/時(shí)) | 途中平均費(fèi)用(單位:元/千米) | 裝卸時(shí)間(單位:小時(shí)) | 裝卸費(fèi)用(單位:元) |
汽車 | 75 | 8 | 2 | 1000 |
火車 | 100 | 6 | 4 | 2000 |
若這批水果在運(yùn)輸過程中(含裝卸時(shí)間)的損耗為150元/時(shí),設(shè)運(yùn)輸路程為x()千米,用汽車運(yùn)輸所需總費(fèi)用為y1元,用火車運(yùn)輸所需總費(fèi)用為y2元.
(1)分別求出y1、y2與x的關(guān)系式;
(2)那么你認(rèn)為采用哪種運(yùn)輸工具比較好?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com