【題目】如圖,網(wǎng)格中每個小正方形的邊長均為1,線段AB、線段EF的端點均在小正方形的頂點上.
(1)在圖中以AB為邊畫Rt△BAC,點C在小正方形的頂點上,使∠BAC=90°,tan∠ACB=;
(2)在(1)的條件下,在圖中畫以EF為邊且面積為3的△DEF,點D在小正方形的頂點上,連接CD、BD,使△BDC是銳角等腰三角形,直接寫出∠DBC的正切值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在同一直角坐標(biāo)系xOy中,有雙曲線,直線y2=k2x+b1,y3=k3x+b2,且點A(2,5),點B(﹣6,n)在雙曲線的圖象上
(1)求y1和y2的解析式;
(2)若y3與直線x=4交于雙曲線,且y3∥y2,求y3的解析式;
(3)直接寫出的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計劃組織學(xué)生參加“書法”、“攝影”、“航!、“圍棋”四個課外興趣小組,要求每人必須參加,并且只能選擇其中一個小組,為了解學(xué)生對四個課外興趣小組的選擇情況,學(xué)校從全體學(xué)生中隨機抽取部分學(xué)生進行問卷調(diào)查,并把調(diào)查結(jié)果制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(部分信息未給出),請你根據(jù)給出的信息解答下列問題:
(1)求參加這次問卷調(diào)查的學(xué)生人數(shù),并補全條形統(tǒng)計圖(畫圖后請標(biāo)注相應(yīng)的數(shù)據(jù));
(2)m=_______,n=_______;
(3)若該校共有1200名學(xué)生,試估計該校選擇“圍棋”課外興趣小組的學(xué)生有多少人?
(4)分別用A、B、C、D表示“書法”、“攝影”、“航模”、“圍棋”,小明和小紅從中各選取一個小組,請用樹狀圖法或列表法求出“兩人選擇小組不同”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與直線交于點,點.
(1)求拋物線的解析式;
(2)點是軸上方拋物線上一點,點是直線上一點,若以為頂點的四邊形是以 為邊的平行四邊形,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉辦園博會知識競賽,打算購買A、B兩種獎品.如果購買A獎品10件、B獎品5件,共需120元;如果購買A獎品5件、B獎品10件,共需90元.
(1)A,B兩種獎品每件各多少元?
(2)若購買A、B獎品共100件,總費用不超過600元,則A獎品最多購買多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,O為坐標(biāo)原點,拋物線y=ax2﹣2ax﹣3a分別交x軸于A、B兩點(點A在點B的側(cè)),與y軸交于點C,連接AC,tan∠ACO=.
(1)如圖l,求a的值;
(2)如圖2,D是第一象限拋物線上的點,過點D作y軸的平行線交CB的延長線于點E,連接AE交BD于點F,AE=BD,求點D的坐標(biāo);
(3)如圖3,在(2)的條件下,連接AD,P是第一象限拋物線上的點(點P與點D不重合),過點P作AD的垂線,垂足為Q,交x軸于點N,點M在x軸上(點M在點N的左側(cè)),點G在NP的延長線上,MP=OG,∠MPN﹣∠MOG=45°,MN=10.點S是△AQN內(nèi)一點,連接AS、QS、NS,AS=AQ,QS=SN,求QS的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過B(3,0),C(0,-3)兩點,點D為頂點.
(1)求拋物線的解析式及頂點D的坐標(biāo);
(2)點E在拋物線的對稱軸上,F在BD上,求BE+EF的最小值;
(3)點P是拋物線第四象限的點(不與B、C重合),連接PB,以PB為邊作正方形BPMN,當(dāng)點M或N恰好落在對稱軸上時,求出對應(yīng)的P點的坐標(biāo)(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于點,,與直線交于點,直線與軸交于點.
(1)求該拋物線的解析式.
(2)點是拋物線上第四象限上的一個動點,連接,,當(dāng)的面積最大時,求點的坐標(biāo).
(3)將拋物線的對稱軸向左平移3個長度單位得到直線,點是直線上一點,連接,,若直線上存在使最大的點,請直接寫出滿足條件的點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明想測量濕地公園內(nèi)某池塘兩端A,B兩點間的距離.他沿著與直線AB平行的道路EF行走,當(dāng)行走到點C處,測得∠ACF=40°,再向前行走100米到點D處,測得∠BDF=52.44°,若直線AB與EF之間的距離為60米,求A,B兩點的距離(結(jié)果精確到0.1)(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin52.44°≈0.79,cos52.44°≈0.61,tan52.44°≈1.30)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com