【題目】如圖,在一張長為7cm,寬為5cm的矩形紙片上,現(xiàn)在剪下一個腰長為4cm的等腰三角形,要求等腰三角形的一個頂點與矩形的一個頂點重合,其余的兩個頂點在矩形的邊上,則剪下的等腰三角形一腰上的的高為_____________。

【答案】4

【解析】

分三種情況進(jìn)行討論:(1AEF為等腰直角三角形,得出AE上的高為AF=4;

2)利用勾股定理求出AE邊上的高BF即可;

3)求出AE邊上的高DF即可

解:分三種情況:

1)當(dāng)AE=AF=4時,

如圖1所示:

AEF的腰AE上的高為AF=4

2)當(dāng)AE=EF=4時,

如圖2所示:

BE=5-4=1

BF=;

3)當(dāng)AE=EF=4時,

如圖3所示:

DE=7-4=3,

DF=

故答案為4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在點B的左邊,線段AB的長為20cm;點C在點D的左邊,點C、D在線段AB上,CD=10cm,點E是線段AC的中點,點F是線段BD的中點

1)若AC=4cm,求線段EF的長;

2)若AC=acm,,用含a的式子表示線段BF的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】依據(jù)下列解方程的過程,請在前面括號內(nèi)填寫變形步驟,在后面的括號內(nèi)填寫變形依據(jù).

解:原方程可變形為

去分母,得.(____________________)

去括號,得.(____________________)

移項,得.(____________________)

合并,得.(合并同類項)

(______),得.______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點EF分別為邊BCCD的中點,AFDE相交于點G,則可得結(jié)論:①AFDE②AFDE(不須證明).

1)如圖,若點E、F不是正方形ABCD的邊BC、CD的中點,但滿足CEDF,則上面的結(jié)論、是否仍然成立;(請直接回答“成立”或“不成立”)

2)如圖,若點EF分別在正方形ABCD的邊CB的延長線和DC的延長線上,且CEDF,此時上面的結(jié)論、是否仍然成立?若成立,請寫出證明過程;若不成立,請說明理由.

3)如圖,在(2)的基礎(chǔ)上,連接AEEF,若點M、N、P、Q分別為AEEF、FDAD的中點,請先判斷四邊形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一種,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,DE分別是AB、BC邊上的中點,過點CCFAB,交DE的延長線于F點,連接CD、BF

1)求證:△BDE≌△CFE;

2)△ABC滿足什么條件時,四邊形BDCF是矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20141月,國家發(fā)改委出臺指導(dǎo)意見,要求2015年底前,所有城市原則上全面實行居民階梯水價制度.小明為了解市政府調(diào)整水價方案的社會反響,隨機訪問了自己居住在小區(qū)的部分居民,就每月每戶的用水量調(diào)價對用水行為改變兩個問題進(jìn)行調(diào)查,并把調(diào)查結(jié)果整理成下面的圖1,圖2

小明發(fā)現(xiàn)每月每戶的用水量在5m2-35m2之間,有8戶居民對用水價格調(diào)價漲幅抱無所謂,不用考慮用水方式的改變.根據(jù)小明繪制的圖表和發(fā)現(xiàn)的信息,完成下列問題:

1n= ,小明調(diào)查了 戶居民,并補全圖1

2)每月每戶用水量的中位數(shù)和眾數(shù)分別落在什么范圍?

3)如果小明所在的小區(qū)有1800戶居民,請你估計視調(diào)價漲幅采取相應(yīng)的用水方式改變的居民戶數(shù)有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用橡皮泥做一個棱長為4cm的正方體.

(1)如圖(1),在頂面中心位置處從上到下打一個邊長為1cm的正方形通孔,打孔后的橡皮泥的表面積是多少?;

(2)如果在第(1)題打孔后,再在正面中心位置處(按圖(2)中的虛線)從前到后打一個邊長為1cm的正方形通孔,那么打孔后的橡皮泥的表面積為是多少?;

(3)如果把第(2)題中從前到后所打的正方形通孔擴大成一個長xcm、寬1cm的長方形通孔,能不能使所得橡皮泥的表面積為130cm2?如果能,請求出x;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點A、B的坐標(biāo)分別為(14)和(3,0),點Cy軸上的一個動點,且A、BC三點不在同一條直線上,當(dāng)△ABC的周長最小時,點C的坐標(biāo)是

A.0,0B.01C.0,2D.0,3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,動點P從點B出發(fā),沿BCCD,DA運動到點A停止,設(shè)點P運動路程為x,ABP的面積為y,如果y關(guān)于x的函數(shù)圖象如圖(2)所示,則矩形ABCD的面積是(  )

A. 10B. 16C. 20D. 36

查看答案和解析>>

同步練習(xí)冊答案