【題目】已知:點(diǎn)P是平行四邊形ABCD對(duì)角線AC所在直線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、C重合),分別過點(diǎn)A、C向直線BP作垂線,垂足分別為E、F,點(diǎn)O為AC的中點(diǎn).

(1)當(dāng)點(diǎn)P與點(diǎn)O重合時(shí)如圖1,求證:OE=OF
(2)直線BP繞點(diǎn)B逆時(shí)針方向旋轉(zhuǎn),當(dāng)點(diǎn)P在對(duì)角線AC上時(shí),且∠OFE=30°時(shí),如圖2,猜想線段CF、AE、OE之間有怎樣的數(shù)量關(guān)系?并給予證明.
(3)當(dāng)點(diǎn)P在對(duì)角線CA的延長(zhǎng)線上時(shí),且∠OFE=30°時(shí),如圖3,猜想線段CF、AE、OE之間有怎樣的數(shù)量關(guān)系?直接寫出結(jié)論即可.

【答案】
(1)

解:∵AE⊥PB,CF⊥BP,

∴∠AEO=∠CFO=90°,

在△AEO和△CFO中,

∴△AOE≌△COF(AAS),

∴OE=OF


(2)

解:圖2中的結(jié)論為:CF=OE+AE

選圖2中的結(jié)論證明如下:

延長(zhǎng)EO交CF于點(diǎn)G,

∵AE⊥BP,CF⊥BP,

∴AE∥CF,

∴∠EAO=∠GCO,

在△EOA和△GOC中,

∴△EOA≌△GOC(ASA),

∴EO=GO,AE=CG,

在Rt△EFG中,∵EO=OG,

∴OE=OF=GO,

∵∠OFE=30°,

∴∠OFG=90°﹣30°=60°,

∴△OFG是等邊三角形,

∴OF=GF,

∵OE=OF,

∴OE=FG,

∵CF=FG+CG,

∴CF=OE+AE


(3)

解:圖3中的結(jié)論為:CF=OE﹣AE

選圖3的結(jié)論證明如下:

延長(zhǎng)EO交FC的延長(zhǎng)線于點(diǎn)G,

∵AE⊥BP,CF⊥BP,

∴AE∥CF,

∴∠AEO=∠G,

在△AOE和△COG中,

,

∴△AOE≌△COG(AAS),

∴OE=OG,AE=CG,

在Rt△EFG中,∵OE=OG,

∴OE=OF=OG,

∵∠OFE=30°,

∴∠OFG=90°﹣30°=60°,

∴△OFG是等邊三角形,

∴OF=FG,

∵OE=OF,

∴OE=FG,

∵CF=FG﹣CG,

∴CF=OE﹣AE.


【解析】(1)由△AOE≌△COF即可得出結(jié)論.(2)圖2中的結(jié)論為:CF=OE+AE,延長(zhǎng)EO交CF于點(diǎn)G,只要證明△EOA≌△GOC,△OFG是等邊三角形,即可解決問題.(3)圖3中的結(jié)論為:CF=OE﹣AE,延長(zhǎng)EO交FC的延長(zhǎng)線于點(diǎn)G,證明方法類似.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等邊三角形的性質(zhì)的相關(guān)知識(shí),掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點(diǎn)DE分別在AB,AC上,CEBC,連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得CF,連接EF. EFCD,求證:∠BDC90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊ABC的邊長(zhǎng)為4, PQ、R分別為邊ABBC、AC上的動(dòng)點(diǎn),則PRQR的最小值是 _____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課本中有一個(gè)例題: 有一個(gè)窗戶形狀如圖1,上部是一個(gè)半圓,下部是一個(gè)矩形,如果制作窗框的材料總長(zhǎng)為6m,如何設(shè)計(jì)這個(gè)窗戶,使透光面積最大?
這個(gè)例題的答案是:當(dāng)窗戶半圓的半徑約為0.35m時(shí),透光面積最大值約為1.05m2
我們?nèi)绻淖冞@個(gè)窗戶的形狀,上部改為由兩個(gè)正方形組成的矩形,如圖2,材料總長(zhǎng)仍為6m,利用圖3,解答下列問題:

(1)若AB為1m,求此時(shí)窗戶的透光面積?
(2)與課本中的例題比較,改變窗戶形狀后,窗戶透光面積的最大值有沒有變大?請(qǐng)通過計(jì)算說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,AD平分∠BAC,ADBC,垂足為D,AN△ABC外角∠CAM的平分線,CEAN,垂足為E.

(1)求證:四邊形ADCE是矩形;

(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是正方形?給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將斜邊長(zhǎng)為4的直角三角板放在直角坐標(biāo)系xOy中,兩條直角邊分別與坐標(biāo)軸重合,P為斜邊的中點(diǎn).現(xiàn)將此三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°后點(diǎn)P的對(duì)應(yīng)點(diǎn)的坐標(biāo)是( )

A.( ,1)
B.(1,﹣
C.(2 ,﹣2)
D.(2,﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將九年級(jí)部分男生擲實(shí)心球的成績(jī)進(jìn)行整理,分成5個(gè)小組(x表示成績(jī),單位:米).A組:5.25≤x<6.25;B組:6.25≤x<7.25;C組:7.25≤x<8.25;D組:8.25≤x<9.25;E組:9.25≤x<10.25,并繪制出扇形統(tǒng)計(jì)圖和頻數(shù)分布直方圖(不完整).規(guī)定x≥6.25為合格,x≥9.25為優(yōu)秀.

(1)這部分男生有多少人?其中成績(jī)合格的有多少人?
(2)這部分男生成績(jī)的中位數(shù)落在哪一組?扇形統(tǒng)計(jì)圖中D組對(duì)應(yīng)的圓心角是多少度?
(3)要從成績(jī)優(yōu)秀的學(xué)生中,隨機(jī)選出2人介紹經(jīng)驗(yàn),已知甲、乙兩位同學(xué)的成績(jī)均為優(yōu)秀,求他倆至少有1人被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程 =2的解是負(fù)數(shù),則n的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小軍同學(xué)在學(xué)校組織的社會(huì)調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖)

(1)請(qǐng)根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;

月均用水量/t

頻數(shù)

百分比

2≤x3

2

4%

3≤x4

12

24%

4≤x5

5≤x6

10

20%

6≤x7

12%

7≤x8

3

6%

8≤x9

2

4%

 

(2)如果家庭月均用水量大于或等于4 t且小于7 t”為中等用水量家庭,請(qǐng)你通過樣本估計(jì)總體中的中等用水量家庭大約有多少戶.

查看答案和解析>>

同步練習(xí)冊(cè)答案