【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.

(1)求證:四邊形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?

【答案】
(1)證明:∵AO=CO,BO=DO

∴四邊形ABCD是平行四邊形,

∴∠ABC=∠ADC,

∵∠ABC+∠ADC=180°,

∴∠ABC=∠ADC=90°,

∴四邊形ABCD是矩形;


(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,

∴∠FDC=36°,

∵DF⊥AC,

∴∠DCO=90°﹣36°=54°,

∵四邊形ABCD是矩形,

∴OC=OD,

∴∠ODC=54°,

∴∠BDF=∠ODC﹣∠FDC=18°.


【解析】(1)先證明四邊形ABCD是平行四邊形,再證明∠ABC=∠ADC=90°,即可得;
(2)先求出∠FDC=36°,再由DF⊥AC,可得∠DCO=54°,再由矩形的性質可得∠ODC=54°,從而求得∠BDF的度數(shù).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC,BD相交于點O,點E,F(xiàn)分別在OA,OC上

(1)給出以下條件;①OB=OD,②∠1=∠2,③OE=OF,請你從中選取兩個條件證明△BEO≌△DFO;

(2)在(1)條件中你所選條件的前提下,添加AE=CF,求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以△ABC的BC邊上一點O為圓心的圓,經過A,B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,AC=FC.

(1)求證:AC是⊙O的切線;
(2)已知圓的半徑R=5,EF=3,求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(11),第2次接著運動到點(2,0),第3次接著運動到點(3,2),,按這樣的運動規(guī)律,經過第2019次運動后,動點P的坐標是(

A. 2018,0B. 2018,2C. 2019,2D. 2019,0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD和菱形ECGF的邊長分別為2和4,∠A=120°.則陰影部分面積是 . (結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖⊙O是△ABC的外接圓,圓心O在這個三角形的高AD上,AB=10,BC=12,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,AB=AC,AB的垂直平分線DEAC于點E,CE的垂直平分線正好經過點B,AC相交于點F,連接BE,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條筆直的公路上,A、B兩地相距300千米.甲乙兩車分別從A、B兩地同時出發(fā),已知甲車速度為100千米/小時,乙車速度為60千米/小時.經過一段時間后,兩車相距100千米,求兩車的行駛時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,專業(yè)救助船“滬救1”輪、“滬救2”輪分別位于A、B兩處,同時測得事發(fā)地點C在A的南偏東60°且C在B的南偏東30°上.已知B在A的正東方向,且相距100里,請分別求出兩艘船到達事發(fā)地點C的距離.(注:里是海程單位,相當于一海里.結果保留根號)

查看答案和解析>>

同步練習冊答案