【題目】如圖,專業(yè)救助船“滬救1”輪、“滬救2”輪分別位于A、B兩處,同時測得事發(fā)地點(diǎn)C在A的南偏東60°且C在B的南偏東30°上.已知B在A的正東方向,且相距100里,請分別求出兩艘船到達(dá)事發(fā)地點(diǎn)C的距離.(注:里是海程單位,相當(dāng)于一海里.結(jié)果保留根號)

【答案】解:作BG⊥AC于G,

∵點(diǎn)C在A的南偏東60°,

∴∠A=90°﹣60°=30°,

∵C在B的南偏東30°,

∴∠ABC=120°,

∴∠C=30°,

∴BC=AB=100里,

∴BG=BCsin30°=50里,

CG=BCcos30°=50 里,

∴AC=2CG=100 里.

答:A船到達(dá)事發(fā)地點(diǎn)C的距離是100 里,B船到達(dá)事發(fā)地點(diǎn)C的距離是100里.


【解析】 首先將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題。抓住已知條件,通過添加輔助線把要解決的問題轉(zhuǎn)化到兩個直角三角形中,因此過點(diǎn)B作G⊥AC于G,在圖中標(biāo)注方向角,根據(jù)等腰三角形和正弦、余弦的概念求出AC、BC的長。
【考點(diǎn)精析】通過靈活運(yùn)用銳角三角函數(shù)的定義,掌握銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.

(1)求證:四邊形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱底面半徑為cm,高為9cm,點(diǎn)A、B分別是圓柱兩底面圓周上的點(diǎn),且A、B在同一母線上,用一根棉線從A點(diǎn)順著圓柱側(cè)面繞3圈到B點(diǎn),則這根棉線的長度最短為(

A. 12cm B. cm C. 15cm D. cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,在平面直角坐標(biāo)系中,點(diǎn) A x 軸負(fù)半軸上一點(diǎn),點(diǎn) B x 軸正半軸上一點(diǎn),C0,﹣2),D(﹣3,﹣2).

1AB,CD 的位置關(guān)系為 ;BCD 的面積為 SACD SBCD(填兩者之間的數(shù)量關(guān)系);

2)如圖 1,若∠1=100°∠ACB=65°,求∠CAB 的度數(shù);

3)如圖 2,若∠ADC=DAC,∠ACB 的平分線 CE DA 的延長線于點(diǎn) E,在 B 點(diǎn)的運(yùn)動過程中的值是否變化?若不變,直接寫出其值;若變化,請說明理由.(注:三角形內(nèi)角和等于 180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高校共有5個大餐廳和2個小餐廳。經(jīng)過測試:同時開放1個大餐廳和2個小餐廳,可供1680名學(xué)生就餐;同時開放2個大餐廳和1個小餐廳,可供2280名學(xué)生就餐。

(1)1個大餐廳和1個小餐廳分別可供多少名學(xué)生就餐?

(2)若7個餐廳同時開放,能否供全校的5300名學(xué)生就餐?請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某紙品加工廠利用邊角料裁出正方形和長方形兩種硬紙片,長方形的寬與正方形的邊長相等(如圖2),再將它們制作成甲乙兩種無蓋的長方體小盒(如圖1).現(xiàn)將300張長方形硬紙片和150張正方形硬紙片全部用于制作這兩種小盒,可以做成甲乙兩種小盒各多少個?(注:圖1中向上的一面無蓋)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,點(diǎn)E、F分別是AD、AB的中點(diǎn),EF交AC于點(diǎn)G,那么AG:GC的值為( )

A.1:2
B.1:3
C.1:4
D.2:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一天,媽媽下班后從公司開車回家,途中想起忘了帶第二天早上開早會的一個文件夾,于是打電話讓辦公室王阿姨馬上從公司送來,同時媽媽也往回開,遇到王阿姨后停下說了幾句話,接著繼續(xù)開車回家.設(shè)媽媽從公司出發(fā)后所用時間為t,媽媽與家的距離為s.下面能反映st的函數(shù)關(guān)系的大致圖象是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)如圖,將□ABCD沿過點(diǎn)A的直線折疊,使點(diǎn)D落到AB邊上的點(diǎn)處,折痕CD邊于點(diǎn)E,連接BE

1)求證:四邊形是平行四邊形

2)若BE平分∠ABC,求證:

查看答案和解析>>

同步練習(xí)冊答案