【題目】拋物線yax2+bx+ca≠0,a、b、c為常數(shù))上部分點的橫坐標x,縱坐標y的對應(yīng)值如下表:

x

……

3

2

1

0

1

2

……

y

……

4

4

m

0

……

則下列結(jié)論中:①拋物線的對稱軸為直線x=﹣1;②m;③當﹣4x2時,y0;④方程ax2+bx+c40的兩根分別是x1=﹣2,x20,其中正確的個數(shù)有( 。

A.1B.2C.3D.4

【答案】C

【解析】

①根據(jù)表格中xy的對應(yīng)值和函數(shù)的對稱性,可得出函數(shù)的對稱軸;
②函數(shù)的對稱軸為:x=-1,則m對應(yīng),即可求解;
③當x=2y=0,根據(jù)函數(shù)的對稱性,x=-4,y=0,而當-4x2時,y0,即可求解;
④方程ax2+bx+c-4=0的兩根,就是y=ax2+bx+cy=4的兩圖像的交點的橫坐標,即可求解.

解:①根據(jù)表格可得,函數(shù)的對稱軸為:x=-1,此時y=,故①符合題意;
②函數(shù)的對稱軸為:x=-1,則m對應(yīng),故②符合題意;
③∵x=2,y=0,∴根據(jù)函數(shù)的對稱性,x=-4y=0,∴當-4x2時,y0,故③不符合題意;
④∵ax2+bx+c-4=0,∴ax2+bx+c=4∴方程ax2+bx+c-4=0的兩根,就是y=ax2+bx+cy=4的兩圖像的交點的橫坐標∴x1=﹣2,x20,故④符合題意,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于拋物線與直線在同一直角坐標系的圖象,其中不正確的是( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在O中,半徑OABC于點H,點D在優(yōu)弧BC

1)若AOB=50°,求ADC的度數(shù);

2)若BC=8,AH=2,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程.

1)求證:無論取何值,這個方程總有實數(shù)根.

2)若方程的兩根都是正數(shù),求的取值范圍.

3)以方程的兩根為兩邊,斜邊為,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市射擊隊打算從君君、標標兩名運動員中選拔一人參加省射擊比賽,射擊隊對兩人的射擊技能進行了測評.在相同的條件下,兩人各打靶5次,成績統(tǒng)計如下:

1)填寫下表:

平均數(shù)(環(huán))

中位數(shù)(環(huán))

方差(環(huán)2

君君

   

8

0.4

標標

8

   

   

2)根據(jù)以上信息,若選派一名隊員參賽,你認為應(yīng)選哪名隊員,并說明理由.

3)如果標標再射擊1次,命中8環(huán),那么他射擊成績的方差會   .(填“變大”“變小”或“不變”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來測量操場旗桿AB的高度,他們通過調(diào)整測量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點A在同一直線上,已知DE=0.5m,EF=0.25m,目測點D到地面的距離DG=1.5m,到旗桿的水平距離DC=20m,則旗桿的高度為( )

A. mB. m

C.11.5mD.10m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若關(guān)于x的一元二次方程ax2+bx+c=0a≠0)的兩個實數(shù)根為x1,x2x1x2),分別以x1,x2為橫坐標和縱坐標得到點Mx1,x2),則稱點M為該一元二次方程的衍生點.

1)若方程為x2-2x=0,寫出該方程的衍生點M的坐標.

2)若關(guān)于x的一元二次方程x2-2m+1x+2m=0m0)的衍生點為M,過點Mx軸和y軸作垂線,兩條垂線與坐標軸恰好圍成一個正方形,求m的值.

3)是否存在b,c,使得不論kk≠0)為何值,關(guān)于x的方程x2+bx+c=0的衍生點M始終在直線y=kx-2k-2)的圖象上,若有請直接寫出b,c的值,若沒有說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB400,BC600,∠ABC45°,在△ABC內(nèi)作一個內(nèi)接矩形DEGF(點E、F在邊BC上,點D、G分別在邊ABAC上),則矩形DEFG的對角線EG最短為_____

查看答案和解析>>

同步練習(xí)冊答案