某校為了解“課程選修”的情況,對報名參加“藝術(shù)鑒賞”,“科技制作”,“數(shù)學(xué)思維”,“閱讀寫作”這四個選修項(xiàng)目的學(xué)生(每人限報一課)進(jìn)行抽樣調(diào)查,下面是根據(jù)收集的數(shù)據(jù)繪制的不完整的統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息,解答下面的問題:
(1)此次共調(diào)查了______名學(xué)生,扇形統(tǒng)計(jì)圖中“藝術(shù)鑒賞”部分的圓心角是______度;
(2)請把這個條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)現(xiàn)該校共有800名學(xué)生報名參加這四個選修項(xiàng)目,請你估計(jì)其中有多少名學(xué)生選修“科技制作”項(xiàng)目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,點(diǎn)A、C分別在x軸、y軸上,四邊形ABCO為矩形,AB=16,點(diǎn)D與點(diǎn)A關(guān)于y軸對稱,tan∠ACB=,點(diǎn)E、F分別是線段AD、AC上的動點(diǎn)(點(diǎn)E不與點(diǎn)A、D重合),且∠CEF=∠ACB.
(1)求AC的長和點(diǎn)D的坐標(biāo);
(2)說明△AEF與△DCE相似;
(3)當(dāng)△EFC為等腰三角形時,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中E是BC上的一點(diǎn),EC=2EB,點(diǎn)D是AC的中點(diǎn),AE、BD交于點(diǎn)F,AF=3FE,若△ABC的面積為18,給出下列命題:①△ABE的面積為6;②△ABF的面積和四邊形DFEC的面積相等;③點(diǎn)F是BD的中點(diǎn);④四邊形DFEC的面積為.其中,正確的結(jié)論有 .(把你認(rèn)為正確的結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,點(diǎn)F為BE中點(diǎn),連結(jié)DF、CF.
(1)如圖1, 當(dāng)點(diǎn)D在AB上,點(diǎn)E在AC上,請直接寫出此時線段DF、CF的數(shù)量關(guān)系和位置關(guān)系(不用證明);
(2)如圖2,在(1)的條件下將△ADE繞點(diǎn)A順時針旋轉(zhuǎn)45°時,請你判斷此時(1)中的結(jié)論是否仍然成立,并證明你的判斷;
(3)如圖3,在(1)的條件下將△ADE繞點(diǎn)A順時針旋轉(zhuǎn)90°時,若AD=1,AC=,求此時線段CF的長(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
若一次函數(shù)y=(m-3)x+5的函數(shù)值y隨x的增大而增大,則 ( )
A.m>0 B.m<0 C.m>3 D.m<3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
B
【解析】連接EC,交AD于點(diǎn)P,次數(shù)EP+BP的值最小,過點(diǎn)E作EF⊥BC,則有BD=CD=2,由勾股定理,可
得AD=2,同時可得EF∥AD,△BEF∽△BAD,所以,解得BF=1.5,F(xiàn)D=0.5,EF=,所以EC==,所求的最小值是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在6×4方格紙中,格點(diǎn)三角形甲經(jīng)過旋轉(zhuǎn)后得到格點(diǎn)三角形乙,則其旋轉(zhuǎn)中心是( )
A.點(diǎn)M B.格點(diǎn)N C.格點(diǎn)P D.格點(diǎn)Q
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com