【題目】如圖,反比例函數(shù)(k≠0)的圖象經(jīng)過點(diǎn)A(1,2)和B(2,n),
(1)以原點(diǎn)O為位似中心畫出△A1B1O,使=;
(2)在y軸上是否存在點(diǎn)P,使得PA+PB的值最小?若存在,求出P的坐標(biāo);若不存在,請說明理由.
【答案】(1)作圖見解析;(2)存在,P(0,).
【解析】
(1)有兩種情形,分別畫出圖象即可;
(2)存在.如圖作點(diǎn)A關(guān)于y軸的對稱點(diǎn)A′,連接BA′交y軸于P,連接PA,此時PA+PB的值最小.求出直線BA′的解析式即可解決問題.
(1)△A1B1O的圖象如圖所示.
(2)存在.如圖作點(diǎn)A關(guān)于y軸的對稱點(diǎn)A′,連接BA′交y軸于P,連接PA,此時PA+PB的值最小.
∵點(diǎn)A(1,2)在反比例函數(shù)y=上,
∴k=2,
∴B(2,1),
∵A′(﹣1,2),
設(shè)最小BA′的解析式為y=kx+b,則有 ,
解得 ,
∴直線BA′的解析式為y=﹣x+,
∴P(0,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線、相交于點(diǎn),,半徑為的的圓心在直線上,且與點(diǎn)的距離為.如果以∕的速度,沿由向的方向移動,那么________秒種后與直線相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,于,平分,于,與相交于點(diǎn),是邊的中點(diǎn),連接與相交于點(diǎn),下列結(jié)論:①;②;③是等腰三角形;④.正確的有( )個.
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廣告公司設(shè)計一幅周長為16米的矩形廣告牌,廣告設(shè)計費(fèi)為每平方米2000元.設(shè)矩形一邊長為x,面積為S平方米.
(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)設(shè)計費(fèi)能達(dá)到24000元嗎?為什么?
(3)當(dāng)x是多少米時,設(shè)計費(fèi)最多?最多是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將一個長方形紙片沿對角線折疊.點(diǎn)落在點(diǎn)處,交于點(diǎn),已知,則折疊后重合部分的面積為( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過直線y=﹣x+3與坐標(biāo)軸的兩個交點(diǎn)A、B,與x軸的另一個交點(diǎn)為C,頂點(diǎn)為D.
(1)求拋物線的解析式;
(2)畫出拋物線的圖象;
(3)在x軸上是否存在點(diǎn)N使△ADN為直角三角形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅爸爸從家騎電瓶車出發(fā),沿一條直路到相距2400m的學(xué)校接小紅回家,小紅爸爸出發(fā)的同時,小紅以96m/min的速度從學(xué)校沿同一條道路步行回家,小紅爸爸趕到學(xué)校校門口等候2min后知道小紅已離校,立即沿原路以原速返回,設(shè)他們出發(fā)的時間為t min,圖示中的折線OABD表示小紅爸爸與家之間的距離S1與t之間的函數(shù)關(guān)系,線段EF表示小紅與家之間的距離S2與t之間的函數(shù)關(guān)系,則小紅爸爸從家出發(fā)在返回途中追上小紅的時間是( )
A.12minB.16minC.18minD.20min
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=ax2-2ax-1(a是常數(shù),a≠0),下列結(jié)論正確的是( )
A. 當(dāng)a=1時,函數(shù)圖象過點(diǎn)(-1,1)
B. 當(dāng)a=-2時,函數(shù)圖象與x軸沒有交點(diǎn)
C. 若a>0,則當(dāng)x≥1時,y隨x的增大而減小
D. 若a<0,則當(dāng)x≤1時,y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線PA交⊙O于A、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若DC+DA=6,⊙O的直徑為10,求AB的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com