【題目】Rt△ABC中,∠BAC=90°,AB=3,AC=4,P為邊BC上一動(dòng)點(diǎn),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn),則AM的最小值為______.
【答案】
【解析】
根據(jù)矩形的性質(zhì)就可以得出,EF,AP互相平分,且EF=AP,根據(jù)垂線段最短的性質(zhì)可以得出AP⊥BC時(shí),AP的值最小,即AM的值最小,由勾股定理求出BC,根據(jù)面積關(guān)系建立等式求出其解即可.
∵四邊形AEPF是矩形,
∴EF,AP互相平分.且EF=AP,
∴EF,AP的交點(diǎn)就是M點(diǎn).
∵當(dāng)AP的值最小時(shí),AM的值就最小,
∴當(dāng)AP⊥BC時(shí),AP的值最小,即AM的值最小.
∵AP.BC=AB.AC,
∴AP.BC=AB.AC.
∵AB=3,AC=4,∠BAC=90°,
∴在Rt△ABC中,由勾股定理,得BC==5,
∴5AP=3×4
∴AP=.
∴AM=.
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計(jì)算:﹣12018﹣|﹣2|÷;
(2)先化簡,再求值:6ab﹣[2(a2+ab﹣)﹣3(a2﹣2ab+b2)﹣1],其中a=﹣1,b=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家1至6月份的用水量統(tǒng)計(jì)如圖所示,關(guān)于這組數(shù)據(jù),下列說法錯(cuò)誤的是( ).
A、眾數(shù)是6噸 B、平均數(shù)是5噸 C、中位數(shù)是5噸 D、方差是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】元旦放假時(shí),小明一家三口一起乘小轎車去探望爺爺、奶奶和姥爺、姥姥.早上從家里出發(fā),向東走了5千米到超市買東西,然后又向東走了2.5千米到爺爺家,下午從爺爺家出發(fā)向西走了10千米到姥爺家,晚上返回家里.
(1)若以小明家為原點(diǎn),向東為正方向,用1個(gè)單位長度表示1千米,請(qǐng)將超市、爺爺家和姥爺家的位置在下面數(shù)軸上分別用點(diǎn)A、B、C表示出來;
(2)超市和姥爺家相距多少千米?
(3)若小轎車每千米耗油0.08升,求小明一家從出發(fā)到返回家,小轎車的耗油量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由線段a、b、c組成的三角形不是直角三角形的是( )
A.a=7,b=24,c=25
B.a= ,b=4,c=5
C.a= ,b=1,c=
D.a= ,b= ,c=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知.
(1)讀句畫圖:畫的角平分線、交、于點(diǎn)、,且、交于點(diǎn),過點(diǎn)作交的延長線于.
(2)在(1)的條件下解決下面問題:
①填表
的度數(shù) | |||
的度數(shù) | __________ | ______________ | ______________ |
②根據(jù)圖中的數(shù)據(jù),你發(fā)現(xiàn)無論是什么角,總是__________(填銳角、鈍角或直角).
③若過點(diǎn)作于,你能猜想與之間的數(shù)量關(guān)系嗎?說明理由.(在(1)中的圖上作于)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,BC=8厘米,點(diǎn)D在AC上,CD=3厘米.點(diǎn)P、Q分別由A、C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P沿AC方向向點(diǎn)C勻速移動(dòng),速度為每秒k厘米,行完AC全程用時(shí)8秒;點(diǎn)Q沿CB方向向點(diǎn)B勻速移動(dòng),速度為每秒1厘米.設(shè)運(yùn)動(dòng)的時(shí)間為x秒(0<x<8),△DCQ的面積為y1平方厘米,△PCQ的面積為y2平方厘米.
(1)求y1與x的函數(shù)關(guān)系,并在圖2中畫出y1的圖象;
(2)如圖2,y2的圖象是拋物線的一部分,其頂點(diǎn)坐標(biāo)是(4,12),求點(diǎn)P的速度及AC的長;
(3)在圖2中,點(diǎn)G是x軸正半軸上一點(diǎn)0<OG<6,過G作EF垂直于x軸,分別交y1、y2的圖象于點(diǎn)E、F.
①說出線段EF的長在圖1中所表示的實(shí)際意義;
②當(dāng)0<x<6時(shí),求線段EF長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,點(diǎn)D是BC上一點(diǎn),將△ABD沿AD翻折后得到△AED,邊AE交BC于點(diǎn)F.
(1)如圖①,當(dāng)AE⊥BC時(shí),寫出圖中所有與∠B相等的角: ;所有與∠C相等的角: .
(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .
① 求∠B的度數(shù);
②是否存在這樣的x的值,使得△DEF中有兩個(gè)角相等.若存在,并求x的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com