【題目】如圖,拋物線與x軸交于兩點,直線與y 軸交于點,與軸交于點,點軸上方的拋物線上一動點,過點軸于點,交直線于點.設點的橫坐標為。

(1)求拋物線的解析式;

(2)若,求的值;

(3)若點是點關于直線的對稱點、是否存在點,使點落在y軸上?若存在,求出相應的點的坐標;若不存在,請說明理由。

【答案】(1)y=-x2+4x+5.(2) m=2或m=.(3) 點P坐標為(-,),(4,5),(3-,2-3).

【解析】

試題(1)利用待定系數(shù)法求出拋物線的解析式;

(2)用含m的代數(shù)式分別表示出PE、EF,然后列方程求解;

(3)解題關鍵是識別出當四邊形PECE是菱形,然后根據(jù)PE=CE的條件,列出方程求解;當四邊形PECE是菱形不存在時,P點y軸上,即可得到點P坐標.

試題解析:(1)將點A、B坐標代入拋物線解析式,得:

,

解得,

拋物線的解析式為:y=-x2+4x+5.

(2)點P的橫坐標為m,

P(m,-m2+4m+5),E(m,-m+3),F(xiàn)(m,0).

PE=|yP-yE|=|(-m2+4m+5)-(-m+3)|=|-m2+m+2|,

EF=|yE-yF|=|(-m+3)-0|=|-m+3|.

由題意,PE=5EF,即:|-m2+m+2|=5|-m+3|=|-m+15|

若-m2+m+2=-m+15,整理得:2m2-17m+26=0,

解得:m=2或m=;

若-m2+m+2=-(-m+15),整理得:m2-m-17=0,

解得:m=或m=

由題意,m的取值范圍為:0<m<5,故m=、m=這兩個解均舍去.

m=2或m=

(3)假設存在.

作出示意圖如下:

點E、E關于直線PC對稱,

∴∠1=2,CE=CE,PE=PE

PE平行于y軸,∴∠1=3,

∴∠2=3,PE=CE,

PE=CE=PE=CE,即四邊形PECE是菱形.

當四邊形PECE是菱形存在時,

由直線CD解析式y(tǒng)=-x+3,可得OD=4,OC=3,由勾股定理得CD=5.

過點E作EMx軸,交y軸于點M,易得CEM∽△CDO,

,

解得CE=|m|,

PE=CE=|m|,

又由(2)可知:PE=|-m2+m+2|

|-m2+m+2|=|m|.

若-m2+m+2=m,整理得:2m2-7m-4=0,

解得m=4或m=-

若-m2+m+2=-m,整理得:m2-6m-2=0,解得m1=3+,m2=3-

由題意,m的取值范圍為:-1<m<5,故m=3+這個解舍去.

當四邊形PECE是菱形這一條件不存在時,

此時P點橫坐標為0,E,C,E'三點重合與y軸上,菱形不存在,即P點為(0,5).

綜上所述,存在滿足條件的點P,可求得點P坐標為(-,),(4,5),(3-,2-3)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示是二次函數(shù)y=ax2+bx+c的圖象.下列結(jié)論:①二次三項式ax2+bx+c的最大值為4;②使y≤3成立的x的取值范圍是x≤-2;③一元二次方程ax2+bx+c=1的兩根之和為-1;④該拋物線的對稱軸是直線x=-1;4a-2b+c<0.其中正確的結(jié)論有______________.(把所有正確結(jié)論的序號都填在橫線上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中 ,∠A=∠B,D、E是邊AB上的點,DG∥AC,EF∥BC,DG、EF相 交于點H.

(1)∠HDE與∠HED是否相等?并說明理由.

解:∠HDE=∠HED.理由如下:

∵DGAC(已知)

                 

EFBC (已知)

            

又∵∠A=∠B (已知)

.

(2)如果∠C=90°,DG、 EF有何位置關系?并仿照 (1)中的解答方法說明理由.

解:        .理由如下:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,小王在校園上的A處正面觀測一座教學樓墻上的大型標牌,測得標牌下端D處的仰角為30°,然后他正對大樓方向前進5m到達B處,又測得該標牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標牌的上端與樓房的頂端平齊.求此標牌上端與下端之間的距離(≈1.732,結(jié)果精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學生的學業(yè)負擔過重會嚴重影響學生對待學習的態(tài)度.為此我市教育部門對部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調(diào)查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調(diào)查結(jié)果繪制成圖和圖的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調(diào)查中,共調(diào)查了 名學生;

2)將圖補充完整;

3)求出圖C級所占的圓心角的度數(shù);

4)根據(jù)抽樣調(diào)查結(jié)果,請你估計我市近8000名八年級學生中大約有多少名學生學習態(tài)度達標(達標包括A級和B級)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于的不等式組有且僅有三個整數(shù)解,且關于的分式方程的解為整數(shù),則符合條件的整數(shù)的個數(shù)是  

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】汽車專賣店銷售某種型號的汽車.已知該型號汽車的進價為10萬元/輛,銷售一段時間后發(fā)現(xiàn):當該型號汽車售價定為15萬元/輛時,平均每周售出8輛;售價每降低0.5萬元,平均每周多售出2輛.

1)若要平均每周售出汽車不低于15輛,該汽車的售價最多定為多少萬元?

2)該店計劃下調(diào)售價,盡可能增加銷量,減少庫存,但要確保平均每周的銷售利潤為40萬元,每輛汽車的售價定為多少合適?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,某校學生會組織了一次全校1200名學生參加的漢字聽寫大賽,并設成績優(yōu)勝獎.

賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機抽取了其中100名學生的成績作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:

成績x/

頻數(shù)

頻率

50≤x60

10

0.10

60≤x70

25

0.25

70≤x80

30

b

80≤x90

a

0.20

90≤x≤100

15

0.15

成績在70≤x80這一組的是:

70 70 71 71 71 72 72 73 73 73 73 75 75 75 75 76 76 76 76 76 76 76 76 77 77 78 78 78 79 79

請根據(jù)所給信息,解答下列問題:

1a   ,b   ;

2)請補全頻數(shù)分布直方圖;

3)這次比賽成績的中位數(shù)是   ;

4)若這次比賽成績在78分以上(含78分)的學生獲得優(yōu)勝獎,則該校參加這次比賽的1200名學生中獲優(yōu)勝獎的約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,四邊形ABCD為矩形,點OAC的中點,過點O的一直線分別與AB、CD交于點E、F,連接BFAC于點M,連接DE、BO,若∠COB60°,FOFC,則下列結(jié)論:①FBOCOMCM;②EOB≌△CMB;③四邊形EBFD是菱形;④MBOE32,其中正確結(jié)論是_____

查看答案和解析>>

同步練習冊答案
鍏� 闂�