【題目】如圖,拋物線與x軸交于兩點,直線與y 軸交于點,與軸交于點,點是軸上方的拋物線上一動點,過點作軸于點,交直線于點.設點的橫坐標為。
(1)求拋物線的解析式;
(2)若,求的值;
(3)若點是點關于直線的對稱點、是否存在點,使點落在y軸上?若存在,求出相應的點的坐標;若不存在,請說明理由。
【答案】(1)y=-x2+4x+5.(2) m=2或m=.(3) 點P坐標為(-,),(4,5),(3-,2-3).
【解析】
試題(1)利用待定系數(shù)法求出拋物線的解析式;
(2)用含m的代數(shù)式分別表示出PE、EF,然后列方程求解;
(3)解題關鍵是識別出當四邊形PECE′是菱形,然后根據(jù)PE=CE的條件,列出方程求解;當四邊形PECE′是菱形不存在時,P點y軸上,即可得到點P坐標.
試題解析:(1)將點A、B坐標代入拋物線解析式,得:
,
解得,
∴拋物線的解析式為:y=-x2+4x+5.
(2)∵點P的橫坐標為m,
∴P(m,-m2+4m+5),E(m,-m+3),F(xiàn)(m,0).
∴PE=|yP-yE|=|(-m2+4m+5)-(-m+3)|=|-m2+m+2|,
EF=|yE-yF|=|(-m+3)-0|=|-m+3|.
由題意,PE=5EF,即:|-m2+m+2|=5|-m+3|=|-m+15|
①若-m2+m+2=-m+15,整理得:2m2-17m+26=0,
解得:m=2或m=;
②若-m2+m+2=-(-m+15),整理得:m2-m-17=0,
解得:m=或m=.
由題意,m的取值范圍為:0<m<5,故m=、m=這兩個解均舍去.
∴m=2或m=.
(3)假設存在.
作出示意圖如下:
∵點E、E′關于直線PC對稱,
∴∠1=∠2,CE=CE′,PE=PE′.
∵PE平行于y軸,∴∠1=∠3,
∴∠2=∠3,∴PE=CE,
∴PE=CE=PE′=CE′,即四邊形PECE′是菱形.
當四邊形PECE′是菱形存在時,
由直線CD解析式y(tǒng)=-x+3,可得OD=4,OC=3,由勾股定理得CD=5.
過點E作EM∥x軸,交y軸于點M,易得△CEM∽△CDO,
∴,
即,
解得CE=|m|,
∴PE=CE=|m|,
又由(2)可知:PE=|-m2+m+2|
∴|-m2+m+2|=|m|.
①若-m2+m+2=m,整理得:2m2-7m-4=0,
解得m=4或m=-;
②若-m2+m+2=-m,整理得:m2-6m-2=0,解得m1=3+,m2=3-.
由題意,m的取值范圍為:-1<m<5,故m=3+這個解舍去.
當四邊形PECE′是菱形這一條件不存在時,
此時P點橫坐標為0,E,C,E'三點重合與y軸上,菱形不存在,即P點為(0,5).
綜上所述,存在滿足條件的點P,可求得點P坐標為(-,),(4,5),(3-,2-3)
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示是二次函數(shù)y=ax2+bx+c的圖象.下列結(jié)論:①二次三項式ax2+bx+c的最大值為4;②使y≤3成立的x的取值范圍是x≤-2;③一元二次方程ax2+bx+c=1的兩根之和為-1;④該拋物線的對稱軸是直線x=-1;⑤4a-2b+c<0.其中正確的結(jié)論有______________.(把所有正確結(jié)論的序號都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中 ,∠A=∠B,D、E是邊AB上的點,DG∥AC,EF∥BC,DG、EF相 交于點H.
(1)∠HDE與∠HED是否相等?并說明理由.
解:∠HDE=∠HED.理由如下:
∵DG∥AC(已知)
∴ = ( )
∵ EF∥BC (已知)
∴ = ( )
又∵∠A=∠B (已知)
∴ = ( ).
(2)如果∠C=90°,DG、 EF有何位置關系?并仿照 (1)中的解答方法說明理由.
解: .理由如下:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,小王在校園上的A處正面觀測一座教學樓墻上的大型標牌,測得標牌下端D處的仰角為30°,然后他正對大樓方向前進5m到達B處,又測得該標牌上端C處的仰角為45°.若該樓高為16.65m,小王的眼睛離地面1.65m,大型標牌的上端與樓房的頂端平齊.求此標牌上端與下端之間的距離(≈1.732,結(jié)果精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學生的學業(yè)負擔過重會嚴重影響學生對待學習的態(tài)度.為此我市教育部門對部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調(diào)查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學生;
(2)將圖①補充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請你估計我市近8000名八年級學生中大約有多少名學生學習態(tài)度達標(達標包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若關于的不等式組有且僅有三個整數(shù)解,且關于的分式方程的解為整數(shù),則符合條件的整數(shù)的個數(shù)是
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】汽車專賣店銷售某種型號的汽車.已知該型號汽車的進價為10萬元/輛,銷售一段時間后發(fā)現(xiàn):當該型號汽車售價定為15萬元/輛時,平均每周售出8輛;售價每降低0.5萬元,平均每周多售出2輛.
(1)若要平均每周售出汽車不低于15輛,該汽車的售價最多定為多少萬元?
(2)該店計劃下調(diào)售價,盡可能增加銷量,減少庫存,但要確保平均每周的銷售利潤為40萬元,每輛汽車的售價定為多少合適?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,某校學生會組織了一次全校1200名學生參加的“漢字聽寫”大賽,并設成績優(yōu)勝獎.
賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機抽取了其中100名學生的成績作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:
成績x/分 | 頻數(shù) | 頻率 |
50≤x<60 | 10 | 0.10 |
60≤x<70 | 25 | 0.25 |
70≤x<80 | 30 | b |
80≤x<90 | a | 0.20 |
90≤x≤100 | 15 | 0.15 |
成績在70≤x<80這一組的是:
70 70 71 71 71 72 72 73 73 73 73 75 75 75 75 76 76 76 76 76 76 76 76 77 77 78 78 78 79 79
請根據(jù)所給信息,解答下列問題:
(1)a= ,b= ;
(2)請補全頻數(shù)分布直方圖;
(3)這次比賽成績的中位數(shù)是 ;
(4)若這次比賽成績在78分以上(含78分)的學生獲得優(yōu)勝獎,則該校參加這次比賽的1200名學生中獲優(yōu)勝獎的約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,四邊形ABCD為矩形,點O是AC的中點,過點O的一直線分別與AB、CD交于點E、F,連接BF交AC于點M,連接DE、BO,若∠COB=60°,FO=FC,則下列結(jié)論:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四邊形EBFD是菱形;④MB:OE=3:2,其中正確結(jié)論是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com