如圖,直線MN經(jīng)過線段AC的端點A,點B、D分別在的角平分線AE、AF上,BD交AC于點O,如果O是BD的中點,試找出當(dāng)點O在AC的什么位置時,四邊形ABCD是矩形,并說明理由.
O在AC的中點時,四邊形ABCD是矩形.證明見解析.

試題分析:由一對鄰補角的平分線互相垂直得出∠FAE=90°,要想四邊形ABCD是矩形,只需證明四邊形ABCD是平行四邊形.
試題解析:O在AC的中點時,四邊形ABCD是矩形.
∵AO=CO,BO=DO,
∴四邊形ABCD是平行四邊形,
又∵∠FAC=∠MAC,∠CAE=∠CAN,
∴∠FAE=∠FAC+∠CAE=(∠MAC+∠CAN)=×180°=90°,
∴平行四邊形ABCD是矩形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形中,的中點,于點
(1)求證:
(2)當(dāng),且平分時,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,若分別以△ABC的AC、BC兩邊為邊向外側(cè)作的四邊形ACDE和BCFG為正方形,則稱這兩個正方形為外展雙葉正方形.
(1)發(fā)現(xiàn):如圖2,當(dāng)∠C=90°時,求證:△ABC與△DCF的面積相等.
(2)引申:如果∠C90°時,(1)中結(jié)論還成立嗎?若成立,請結(jié)合圖1給出證明;若不成立,請說明理由;
(3)運用:如圖3,分別以△ABC的三邊為邊向外側(cè)作的四邊形ACDE、BCFG和ABMN為正方形,則稱這三個正方形為外展三葉正方形.已知△ABC中,AC=3,BC=4.當(dāng)∠C=_____度時,圖中陰影部分的面積和有最大值是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在△ABC中,E、D分別為AB、AC上的點,且ED//BC,O為DC中點,連結(jié)EO并延長交BC的延長線于點F,則有S四邊形EBCD=SEBF.
(1)如圖2,在已知銳角∠AOB內(nèi)有一個定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.將直線MN繞著點P旋轉(zhuǎn)的過程中發(fā)現(xiàn),當(dāng)直線MN滿足某個條件時,△MON的面積存在最小值.直接寫出這個條件:_______________________.
(2)如圖3,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A、B、C、P的坐標(biāo)分別為(6,0)、(6,3)、(,)、(4、2),過點P的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠B=90°,AC=60,AB=30。點D是AC上的動點,過D作DF⊥BC于F,再過F作FE//AC,交AB于E。設(shè)CD=x,DF=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)當(dāng)四邊形AEFD為菱形時,求x的值;
(3)當(dāng)△FED是直角三角形時,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

對正方形ABCD分劃如圖①,其中E、F分別是BC、CD的中點,M、N、G分別是OB、OD、EF的中點,沿分劃線可以剪出一副由七塊部件組成的“七巧板”.  
(1)如果設(shè)正方形OGFN的邊長為l,這七塊部件的各邊長中,從小到大的四個不同值分別為l、x1、x2、x3,那么x1=    ;各內(nèi)角中最小內(nèi)角是    度,最大內(nèi)角是      度;用它們拼成的一個五邊形如圖②,其面積是     ,
(2)請用這副七巧板,既不留下一絲空白,又不相互重疊,拼出2種邊數(shù)不同的凸多邊形,畫在下面格點圖中,并使凸多邊形的頂點落在格點圖的小黑點上(格點圖中,上下、左右相鄰兩點距離都為1).
注:不能拼成與圖①或②全等的多邊形!
        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,四邊形ABCD是平行四邊形,AB=10,AD=8,AC⊥BC于C,則四邊形ABCD的面積是         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在等邊△ABC中,點D是BC邊的中點,以AD為邊作等邊△ADE

(1)求∠CAE的度數(shù);
(2)取AB邊的中點F,連結(jié)CF、CE,試證明四邊形AFCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四邊形ABCD的對角線AC、BD互相垂直,則下列條件能判定四邊形ABCD為菱形的是
A.BA=BC         B.AB//CD     C.AC=BD        D.AC、BD互相平分

查看答案和解析>>

同步練習(xí)冊答案