【題目】正方形ABCD與正五邊形EFGHM的邊長相等,初始如圖所示,將正方形繞點(diǎn)F順時(shí)針旋轉(zhuǎn)使得BC與FG重合,再將正方形繞點(diǎn)G順時(shí)針旋轉(zhuǎn)使得CD與GH重合…按這樣的方式將正方形依次繞點(diǎn)H、M、E旋轉(zhuǎn)后,正方形中與EF重合的是( )
A.AB
B.BC
C.CD
D.DA
【答案】B
【解析】解:∵正方形ABCD與正五邊形EFGHM的邊長相等,
∴從BC與FG重合開始,正方形ABCD的各邊依次與正五邊形EFGHM的各邊重合,
而與EF重合是正方形的邊與正五邊形的邊第五次重合,
∴正方形中與EF重合的是BC.
故選B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解旋轉(zhuǎn)的性質(zhì)的相關(guān)知識,掌握①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了慶祝即將到來的“五四”青年節(jié),某校舉行了書法比賽,賽后隨機(jī)抽查部分參賽同學(xué)的成績,并制作成圖表如下:
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | m | 0.45 |
80≤x<90 | 60 | n |
90≤x≤100 | 20 | 0.1 |
請根據(jù)以上圖表提供的信息,解答下列問題:
(1)這次隨機(jī)抽查了 名學(xué)生;表中的數(shù)m= ,n= ;
(2)請?jiān)趫D中補(bǔ)全頻數(shù)分布直方圖;
(3)若繪制扇形統(tǒng)計(jì)圖,分?jǐn)?shù)段60≤x<70所對應(yīng)扇形的圓心角的度數(shù)是 ;
(4)全校共有600名學(xué)生參加比賽,估計(jì)該校成績80≤x<100范圍內(nèi)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)3﹣(+2)﹣(﹣2)﹣(﹣0.75);
(2)(﹣+)×(﹣78);
(3)(﹣)÷(1﹣﹣);
(4)﹣32﹣2÷×[2﹣(﹣)2]﹣(﹣2)3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被平均分成五個(gè)扇形,五個(gè)扇形內(nèi)部分別標(biāo)有數(shù)字.﹣2、3、﹣4、5.若將轉(zhuǎn)盤轉(zhuǎn)動(dòng)兩次,每一次停止轉(zhuǎn)動(dòng)后,指針指向的扇形內(nèi)的數(shù)字分別記為m,n(當(dāng)指針指在邊界線時(shí)視為無效,重轉(zhuǎn)),從而確定一個(gè)點(diǎn)的坐標(biāo)為A(m,n).請用列表或者畫樹狀圖的方法求出所有可能得到的點(diǎn)A的坐標(biāo),并求出點(diǎn)A在第一象限內(nèi)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計(jì)劃撥款9萬元從廠家購進(jìn)50臺電視機(jī),已知該廠家生產(chǎn)三種不同型號的電視機(jī),出廠價(jià)分別為:甲種每臺1500元,乙種每臺2100元,丙種每臺2500元,若商場同時(shí)購進(jìn)其中兩種不同型號電視機(jī)共50臺,用去9萬元,請你研究一下商場的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙每個(gè)小方格是邊長為1個(gè)單位長度的正方形,在平面直角坐標(biāo)系中,點(diǎn)A(1,0),B(5,0),C(a,b)D(1,4).
(1)描出A、B、C、D四點(diǎn)的位置.如圖,則a= ;b= ;
(2)四邊形ABCD的面積是 ;(直接寫出結(jié)果)
(3)把四邊形ABCD向左平移6個(gè)單位,再向下平移1個(gè)單位得到四邊形A'B'C'D',在圖中畫出四邊形A'B'C'D',并寫出A'B'C'D'的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),A點(diǎn)的坐標(biāo)為,C點(diǎn)的坐標(biāo)為,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度沿著的路線移動(dòng)即:沿著長方形移動(dòng)一周.
寫出點(diǎn)B的坐標(biāo)______
當(dāng)點(diǎn)P移動(dòng)了4秒時(shí),描出此時(shí)P點(diǎn)的位置,并求出點(diǎn)P的坐標(biāo).
在移動(dòng)過程中,當(dāng)點(diǎn)P到x軸距離為5個(gè)單位長度時(shí),求點(diǎn)P移動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折線AC﹣BC是一條公路的示意圖,AC=8km,甲騎摩托車從A地沿這條公路到B地,速度為40km/h,乙騎自行車從C地到B地,速度為10km/h,兩人同時(shí)出發(fā),結(jié)果甲比乙早到6分鐘.
(1)求這條公路的長;
(2)設(shè)甲乙出發(fā)的時(shí)間為t小時(shí),求甲沒有超過乙時(shí)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了貫徹教育部關(guān)于中小學(xué)生“每天鍛煉一小時(shí)”的要求,某市教育局做了一次隨機(jī)抽樣調(diào)查,其內(nèi)容是:(1)學(xué)生每天鍛煉時(shí)間是否達(dá)到1小時(shí);(2)學(xué)生每天鍛煉時(shí)間未達(dá)到1小時(shí)的原因.隨機(jī)調(diào)查了600名學(xué)生,把所得的數(shù)據(jù)制成了如下的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖(不完整)
根據(jù)圖示,回答以下問題:
(1)每天鍛煉時(shí)間達(dá)到1小時(shí)的人數(shù)占被調(diào)查總?cè)藬?shù)的百分比是;
每天鍛煉時(shí)間未達(dá)到1小時(shí)的人數(shù)占被調(diào)查總?cè)藬?shù)的百分比是;
每天鍛煉時(shí)間未達(dá)到1小時(shí)的人數(shù)為人,其中原因是“時(shí)間被擠占”的人數(shù)是人;
(2)補(bǔ)全扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖;
(3)若該市現(xiàn)有中小學(xué)生約27萬人,據(jù)此調(diào)查,可估計(jì)今年該市中小學(xué)生每天鍛煉未達(dá)到1小時(shí)的學(xué)生約有多少萬人?
(4)從這次接受調(diào)查的學(xué)生中,隨機(jī)抽取一名學(xué)生的“每天鍛煉一小時(shí)”的情況,回答內(nèi)容為“時(shí)間被擠占”的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com