【題目】快車從甲地駛向乙地,慢車從乙地駛向甲地,兩車同時(shí)出發(fā)并且在同一條公路上勻速行駛,途中快車休息1.5小時(shí),慢車沒有休息.設(shè)慢車行駛的時(shí)間為x小時(shí),快車行駛的路程為千米,慢車行駛的路程為千米.如圖中折線OAEC表示x之間的函數(shù)關(guān)系,線段OD表示x之間的函數(shù)關(guān)系.

請(qǐng)解答下列問題:

1)求快車和慢車的速度;

2)求圖中線段EC所表示的x之間的函數(shù)表達(dá)式;

3)線段OD與線段EC相交于點(diǎn)F,直接寫出點(diǎn)F的坐標(biāo),并解釋點(diǎn)F的實(shí)際意義.

【答案】1)快車的速度為90千米/小時(shí),慢車的速度為60千米/小時(shí);(2;(3)點(diǎn)F的坐標(biāo)為,點(diǎn)F代表的實(shí)際意義是在4.5小時(shí)時(shí),甲車與乙車行駛的路程相等.

【解析】

1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得快車和慢車的速度;

2)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得點(diǎn)E和點(diǎn)C的坐標(biāo),從而可以求得x之間的函數(shù)表達(dá)式;

3)根據(jù)圖象可知,點(diǎn)F表示的是快車與慢車行駛的路程相等,從而以求得點(diǎn)F的坐標(biāo),并寫出點(diǎn)F的實(shí)際意義.

1)快車的速度為:千米/小時(shí),

慢車的速度為:千米/小時(shí),

答:快車的速度為90千米/小時(shí),慢車的速度為60千米/小時(shí);

2)由題意可得,

點(diǎn)E的橫坐標(biāo)為:,

則點(diǎn)E的坐標(biāo)為,

快車從點(diǎn)E到點(diǎn)C用的時(shí)間為:(小時(shí)),

則點(diǎn)C的坐標(biāo)為

設(shè)線段EC所表示的x之間的函數(shù)表達(dá)式是,

,得,

即線段EC所表示的x之間的函數(shù)表達(dá)式是;

3)設(shè)點(diǎn)F的橫坐標(biāo)為a,

解得,,

即點(diǎn)F的坐標(biāo)為,點(diǎn)F代表的實(shí)際意義是在4.5小時(shí)時(shí),甲車與乙車行駛的路程相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年5月份是心理健康宣傳月,某中學(xué)開展以“關(guān)心他人,關(guān)愛自己”為主題的心理健康系列活動(dòng).為了解師生的心理健康狀況,對(duì)全體2000名師生進(jìn)行了心理測(cè)評(píng),隨機(jī)抽取20名師生的測(cè)評(píng)分?jǐn)?shù)進(jìn)行了以下數(shù)據(jù)的整理與

①數(shù)據(jù)收集:抽取的20名師生測(cè)評(píng)分?jǐn)?shù)如下

85,82,94,72,78,89,9698,84,65,73,5483,76,70,8583,6392,90

②數(shù)據(jù)整理:將收集的數(shù)據(jù)進(jìn)行分組并評(píng)價(jià)等第:

分?jǐn)?shù)x

人數(shù)

5

a

5

2

1

等第

③數(shù)據(jù)繪制成不完整的扇形統(tǒng)計(jì)圖:

④依據(jù)統(tǒng)計(jì)信息回答問題

1)統(tǒng)計(jì)表中的   

2)心理測(cè)評(píng)等第等的師生人數(shù)所占扇形的圓心角度數(shù)為   

3)學(xué)校決定對(duì)等的師生進(jìn)行團(tuán)隊(duì)心理輔導(dǎo),請(qǐng)你根據(jù)數(shù)據(jù)分析結(jié)果,估計(jì)有多少師生需要參加團(tuán)隊(duì)心理輔導(dǎo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸相交于點(diǎn),與軸相交于點(diǎn)

求該函數(shù)的表達(dá)式;

點(diǎn)為該函數(shù)在第一象限內(nèi)的圖象上一點(diǎn),過點(diǎn),垂足為點(diǎn),連接

求線段的最大值;

若以點(diǎn)、、為頂點(diǎn)的三角形與相似,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中(如圖),已知一次函數(shù)的圖像平行于直線,且經(jīng)過點(diǎn)A2,3),與x軸交于點(diǎn)B。

1)求這個(gè)一次函數(shù)的解析式;

2)設(shè)點(diǎn)Cy軸上,當(dāng)ACBC時(shí),求點(diǎn)C的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教室里的飲水機(jī)接通電源就進(jìn)入自動(dòng)程序,開機(jī)加熱時(shí)每分鐘上升10℃,加熱到100℃停止加熱,水溫開始下降,此時(shí)水溫)與開機(jī)后用時(shí))成反比例關(guān)系,直至水溫降至30℃,飲水機(jī)關(guān)機(jī),飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開機(jī),重復(fù)上述自動(dòng)程序.若在水溫為30℃時(shí)接通電源,水溫)與時(shí)間)的關(guān)系如圖所示:

1)分別寫出水溫上升和下降階段之間的函數(shù)關(guān)系式;

2)怡萱同學(xué)想喝高于50℃的水,請(qǐng)問她最多需要等待多長(zhǎng)時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在已知的ABC中,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn)M,N;②作直線MNAB于點(diǎn)D,連接CD.CD=AC,∠A=58°,則∠ABC的度數(shù)為(

A. 29°B. 30°C. 31°D. 32°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖,在平面直角坐標(biāo)系中,直線+ny軸交于點(diǎn)A 與反比例函數(shù)的圖象交于B (-2,-2),直線B點(diǎn)與x軸交于點(diǎn)C,OA:OC= 4:3.

1)求m的值以及直線的函數(shù)表達(dá)式;

2)連接AC,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)的坐標(biāo)為,且,拋物線圖象經(jīng)過三點(diǎn).

1)求兩點(diǎn)的坐標(biāo);

2)求拋物線的解析式;

3)若點(diǎn)是直線下方的拋物線上的一個(gè)動(dòng)點(diǎn),作于點(diǎn),當(dāng)的值最大時(shí),求此時(shí)點(diǎn)的坐標(biāo)及的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】湖南省作為全國(guó)第三批啟動(dòng)高考綜合改革的省市之一,從2018年秋季入學(xué)的高中一年級(jí)學(xué)生開始實(shí)施高考綜合改革.深化高考綜合改革,承載著廣大考生的美好期盼,事關(guān)千家萬戶的切身利益,社會(huì)關(guān)注度高.為了了解我市某小區(qū)居民對(duì)此政策的關(guān)注程度,某數(shù)學(xué)興趣小組隨機(jī)采訪了該小區(qū)部分居民,根據(jù)采訪情況制做了如統(tǒng)計(jì)圖表:

關(guān)注程度

頻數(shù)

頻率

A.高度關(guān)注

m

0.4

B.一般關(guān)注

100

0.5

C.沒有關(guān)注

20

n

(1)根據(jù)上述統(tǒng)計(jì)圖表,可得此次采訪的人數(shù)為 ,m ,n

(2)根據(jù)以上信息補(bǔ)全圖中的條形統(tǒng)計(jì)圖.

(3)請(qǐng)估計(jì)在該小區(qū)1500名居民中,高度關(guān)注新高考政策的約有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案