【題目】如圖,在平行四邊形ABCD中,AE是BC邊上的高,將△ABE沿BC方向平移,使點(diǎn)E與點(diǎn)C重合,得△GFC.
(1)求證:BE=DG;
(2)若∠B=60°,當(dāng)BC=AB時(shí),四邊形ABFG是菱形;
(3)若∠B=60°,當(dāng)BC=AB時(shí),四邊形AECG是正方形.
【答案】
(1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB=CD.
∵AE是BC邊上的高,且CG是由AE沿BC方向平移而成,
∴CG⊥AD.AE=CG
∴∠AEB=∠CGD=90°.
∵在Rt△ABE與Rt△CDG中, ,
∴Rt△ABE≌Rt△CDG(HL),
∴BE=DG.
(2)
(3)
【解析】(2)解:當(dāng)BC= AB時(shí),四邊形ABFG是菱形.
證明:∵AB∥GF,AG∥BF,
∴四邊形ABFG是平行四邊形.
∵Rt△ABE中,∠B=60°,
∴∠BAE=30°,
∴BE= AB(直角三角形中30°所對(duì)直角邊等于斜邊的一半),
∵BE=CF,BC= AB,
∴EF= AB.
∴AB=BF.
∴四邊形ABFG是菱形.
故答案是: ;(3)解:BC= AB時(shí),四邊形AECG是正方形.
∵AE⊥BC,GC⊥CB,
∴AE∥GC,∠AEC=90°,
∵AG∥CE,
∴四邊形AECG是矩形,
當(dāng)AE=EC時(shí),矩形AECG是正方形,
∵∠B=60°,
∴EC=AE=ABsin60°= AB,BE= AB,
∴BC= AB.
故答案是: .
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平行四邊形的性質(zhì)和菱形的判定方法的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線(xiàn)互相平分;任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線(xiàn),垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線(xiàn)若垂直,順理成章為菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(11·大連)(本題10分)如圖10,某容器由A、B、C三個(gè)長(zhǎng)方體組成,其中
A、B、C的底面積分別為25cm2、10cm2、5cm2,C的容積是容器容積的(容器各面的厚
度忽略不計(jì)).現(xiàn)以速度v(單位:cm3/s)均勻地向容器注水,直至注滿(mǎn)為止.圖11是注水
全過(guò)程中容器的水面高度h(單位:cm)與注水時(shí)間t(單位:s)的函數(shù)圖象.
⑴在注水過(guò)程中,注滿(mǎn)A所用時(shí)間為______s,再注滿(mǎn)B又用了_____s;
⑵求A的高度hA及注水的速度v;
⑶求注滿(mǎn)容器所需時(shí)間及容器的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k為常數(shù).
(1)求證:無(wú)論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過(guò)第三象限,求k的取值范圍;
(3)若原方程的一個(gè)根大于3,另一個(gè)根小于3,求k的最大整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,BD平分∠ABC,CE平分∠DCF,∠ACE=90°.
(1)判斷BD和CE的位置關(guān)系,并說(shuō)明理由;
(2)判斷AC和BD是否垂直,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列解答過(guò)程:如圖甲,AB∥CD,探索∠P與∠A,∠C之間的關(guān)系.
解:過(guò)點(diǎn)P作PE∥AB.
∵AB∥CD,
∴PE∥AB∥CD(平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行).
∴∠1+∠A=180°(兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)),
∠2+∠C=180°(兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)).
∴∠1+∠A+∠2+∠C=360°.
又∵∠APC=∠1+∠2,
∴∠APC+∠A+∠C=360°.
如圖乙和圖丙,AB∥CD,請(qǐng)根據(jù)上述方法分別探索兩圖中∠P與∠A,∠C之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90,AC=12cm,BC=24cm,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AC向點(diǎn)C以2cm/s的速度移動(dòng).動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BC向點(diǎn)C以4cm/s的速度移動(dòng),如果P、Q分別從點(diǎn)A、B同時(shí)出發(fā),那么△PCQ的面積S隨出發(fā)時(shí)間t如何變化?(寫(xiě)出函數(shù)關(guān)系式及t的取值范圍)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為( 。
A. 3 B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果批發(fā)市場(chǎng)香蕉的價(jià)格如下表
購(gòu)買(mǎi)香蕉數(shù)(千克) | 不超過(guò)20千克 | 20千克以上但不超過(guò)40千克 | 40千克以上 |
每千克的價(jià)格 | 6元 | 5元 | 4元 |
張強(qiáng)兩次共購(gòu)買(mǎi)香蕉50千克,已知第二次購(gòu)買(mǎi)的數(shù)量多于第一次購(gòu)買(mǎi)的數(shù)量,共付出264元,請(qǐng)問(wèn)張強(qiáng)第一次,第二次分別購(gòu)買(mǎi)香蕉多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ACB=90°,D為BC的中點(diǎn),DE⊥AB,垂足為E,過(guò)點(diǎn)B作BF∥AC交DE的延長(zhǎng)線(xiàn)于點(diǎn)F,連接CF.
(1)求證:AD⊥CF;
(2)連接AF,試判斷△ACF的形狀,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com