【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD,點(diǎn)D在雙曲線(k≠0)上.將正方形沿x軸負(fù)方向平移a個(gè)單位長(zhǎng)度后,點(diǎn)C恰好落在該雙曲線上,則a的值是
A.1B.2C.3D.4
【答案】B
【解析】
如圖,作CE⊥y軸于點(diǎn)E,交雙曲線于點(diǎn)G,作DF⊥x軸于點(diǎn)F,
在y=﹣3x+3中,令x=0,解得:y=3,即B的坐標(biāo)是(0,3).
令y=0,解得:x=1,即A的坐標(biāo)是(1,0).
則OB=3,OA=1.
∵∠BAD=90°,∴∠BAO+∠DAF=90°.
又∵Rt△ABO中,∠BAO+∠OBA=90°,∴∠FAD=∠OBA.
∵在△OAB和△FDA中,∠OBA =∠FAD,∠AOB =∠DFA,AB=AD,
∴△OAB≌△FDA(AAS).
同理,△OAB≌△FDA≌△EBC.
∴AF=OB=EC=3,DF=OA=BE=1.∴OF=OE=4.
∴D的坐標(biāo)是(4,1),代入得:k=4,則函數(shù)的解析式是:.
由OE=4得C的縱坐標(biāo)是4,把y=4代入得:x=1,即G的坐標(biāo)是(1,4).
∴CG=2,即將正方形沿x軸負(fù)方向平移2個(gè)單位長(zhǎng)度后,點(diǎn)C恰好落在該雙曲線上.
∴a=2.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,把△ABC繞AB邊上的點(diǎn)D順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<180°),得到Rt△A′DE,A′C′交AB于點(diǎn)E,若AD=BE,則AD的長(zhǎng)為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形AOBC的邊OB、OA分別在x、y軸上,點(diǎn)C坐標(biāo)為(8,8),將正方形AOBC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形ADEF,ED交線段BC于點(diǎn)Q,ED的延長(zhǎng)線交線段OB于點(diǎn)P,連接AP、AQ.
(1)求證:△ACQ≌△ADQ;
(2)求∠PAQ的度數(shù),并判斷線段OP、PQ、CQ之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)連接BE、EC、CD、DB得到四邊形BECD,在旋轉(zhuǎn)過(guò)程中,四邊形BECD能否是矩形?如果能,請(qǐng)求出點(diǎn)P的坐標(biāo),如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某消防隊(duì)在一居民樓前進(jìn)行演習(xí),消防員利用云梯成功救出點(diǎn)B處的求救者后,又發(fā)現(xiàn)點(diǎn)B正上方點(diǎn)C處還有一名求救者.在消防車上點(diǎn)A處測(cè)得點(diǎn)B和點(diǎn)C的仰角分別是45°和65°,點(diǎn)A距地面2.5米,點(diǎn)B距地面10.5米.為救出點(diǎn)C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列命題:
①若a≠b,則a2≠b2;②對(duì)于不為零的實(shí)數(shù)c,關(guān)于x的方程的根是c.
③對(duì)角線互相垂直平分的四邊形是菱形.④過(guò)一點(diǎn)有且只有一條直線與已知直線平行.
⑤在反比例函數(shù)中,如果函數(shù)值y<1時(shí),那么自變量x>2,是真命題的個(gè)數(shù)是 ( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自從湖南與歐洲的“湘歐快線”開(kāi)通后,我省與歐洲各國(guó)經(jīng)貿(mào)往來(lái)日益頻繁,某歐洲客商準(zhǔn)備在湖南采購(gòu)一批特色商品,經(jīng)調(diào)查,用16 000元采購(gòu)A型商品的件數(shù)是用7 500元采購(gòu)B型商品的件數(shù)的2倍,一件A型商品的進(jìn)價(jià)比一件B型商品的進(jìn)價(jià)多10元.
(1)求一件A,B型商品的進(jìn)價(jià)分別為多少元?
(2)若該歐洲客商購(gòu)進(jìn)A,B型商品共250件進(jìn)行試銷,其中A型商品的件數(shù)不大于B型的件數(shù),且不小于80件,已知A型商品的售價(jià)為240元/件,B型商品的售價(jià)為220元/件,且全部售出.設(shè)購(gòu)進(jìn)A型商品m件,求該客商銷售這批商品的利潤(rùn)v與m之間的函數(shù)解析式,并寫出m的取值范圍;
(3)在(2)的條件下,歐洲客商決定在試銷活動(dòng)中每售出一件A型商品,就從一件A型商品的利潤(rùn)中捐獻(xiàn)慈善資金a元,求該客商售完所有商品并捐獻(xiàn)慈善資金后獲得的最大收益.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點(diǎn)D落在點(diǎn)D′處,則重疊部分△AFC的面積為( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC中,∠A=68°,以AB為直徑的⊙O與AC,BC的交點(diǎn)分別為D,E
(Ⅰ)如圖①,求∠CED的大小;
(Ⅱ)如圖②,當(dāng)DE=BE時(shí),求∠C的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC.
(1)如圖1,若O為AB的中點(diǎn),以O為圓心,OB為半徑作⊙O交BC于點(diǎn)D,過(guò)D作DE⊥AC,垂足為E.
①試說(shuō)明:BD=CD;
②判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由.
(2)如圖2,若點(diǎn)O沿OB向點(diǎn)B移動(dòng),以O為圓心,以OB為半徑作⊙O與AC相切于點(diǎn)F,與AB相交于點(diǎn)G,與BC相交于點(diǎn)D,DE⊥AC,垂足為E,已知⊙O的半徑長(zhǎng)為4,CE=2,求切線AF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com