【題目】為了測(cè)量休閑涼亭AB的高度,某數(shù)學(xué)興趣小組在水平地面D處豎直放置一個(gè)標(biāo)桿CD,并在地面上水平放置一個(gè)平面鏡E,使得B、ED在同一水平線上,如圖所示.該小組在標(biāo)桿的F處通過(guò)平面鏡E恰好觀測(cè)到?jīng)鐾ろ敹?/span>A,在F處測(cè)得涼亭A頂端的仰角為30°,平面鏡E的俯角為45°,FD2米,求休閑涼亭AB的高度.(結(jié)果保留根號(hào))

【答案】休閑涼亭AB的高度為(4+2)米.

【解析】

設(shè)ABx米,根據(jù)正切的定義列式計(jì)算,得到答案.

解:如圖所示,由題意可得:DFBH2米,FHDB,

∵∠HFE=∠FED=∠AEB45°,∠FDE=∠AHF=∠ABD90°,∠AFH30°,

∴∠DFE=∠FED45°,∠AEB=∠EAB45°,

DEDF2米,EBAB,

設(shè)休閑涼亭AB的高度為x米,則EBABx米,

FHDB=(x+2)米,

RtAFH中,tanAFH,

,

x4+2,

答:休閑涼亭AB的高度為(4+2)米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以菱形的對(duì)角線為邊,在的左側(cè)作正方形連結(jié)并延長(zhǎng)交于點(diǎn).若正方形的面積是菱形面積的倍,,則_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABBC,以BC為直徑作⊙OAC交⊙O于點(diǎn)E,過(guò)點(diǎn)EEGAB于點(diǎn)F,交CB的延長(zhǎng)線于點(diǎn)G

1)求證:EG是⊙O的切線;

2)若GF2GB4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,MN是⊙O的直徑,作ABMN,垂足為點(diǎn)D,連接AMAN,點(diǎn)C上一點(diǎn),且,連接CM,交AB于點(diǎn)E,交AN于點(diǎn)F,現(xiàn)給出以下結(jié)論:①AD=BD;②∠MAN=90°;④∠ACM+ANM=MOB;AE=MF

其中正確結(jié)論的個(gè)數(shù)是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),CDE是等邊三角形,連接EB、EA,延長(zhǎng)BE交邊AD于點(diǎn)F

1)求證:ADE≌△BCE;

2)求∠AFB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Q為正方形ABCD外一點(diǎn),連接BQ,過(guò)點(diǎn)DDQBQ,垂足為Q,G、K分別為ABBC上的點(diǎn),連接AK、DG,分別交BQF、EAKDG,垂足為點(diǎn)HAF5,DH8,FBQ中點(diǎn),M為對(duì)角線BD的中點(diǎn),連接HM并延長(zhǎng)交正方形于點(diǎn)N,則HN的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】遠(yuǎn)遠(yuǎn)在一個(gè)不透明的盒子里裝了4個(gè)除顏色外其他都相同的小球,其中有3個(gè)是紅球,1個(gè)是綠球,每次拿一個(gè)球然后放回去,拿2次,則至少有一次取到綠球的概率是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某商品的進(jìn)價(jià)為每件40元.現(xiàn)在的售價(jià)是每件60元.每星期可賣出300件.市場(chǎng)調(diào)查反映:如調(diào)整價(jià)格,每漲價(jià)一元.每星期要少賣出10件;每降價(jià)一元,每星期可多賣出18件.如何定價(jià)才能使利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,,拋物線過(guò)點(diǎn),頂點(diǎn)位于第一象限且在線段的垂直平分線上,若拋物線與線段無(wú)公共點(diǎn),則的取值范圍是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案