【題目】為了解永康市某中學八年級學生的視力水平,從中抽查部分學生的視力情況,繪制了如圖統(tǒng)計圖:
(1)本次調查的樣本容量是 ;
(2)請補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中“視力正常”的圓心角度數(shù);
(3)該校八年級共有200位學生,請估計該校八年級視力正常的學生人數(shù).
【答案】(1)40;(2)圖形見解析, 108°;(3) 60人.
【解析】
(1)用中度近視人數(shù)除以其占被調查人數(shù)的百分比可得樣本容量;
(2)用總人數(shù)減去其余3種視力情況的人數(shù)可得輕度近視人數(shù),補全條形圖即可;用360°乘以視力正常人數(shù)所占比例可得其對應圓心角度數(shù);
(3)用樣本中視力正常的人數(shù)所占比例乘以總人數(shù)可得.
(1)本次調查的樣本容量是:10÷25%=40;
(2)輕度近視的人數(shù)為:40×30%=12(人),補全條形圖如圖:
視力正常的圓心角度數(shù)=360°×=108°;
(3)200×=60(人),
答:估計該校八年級視力正常的學生人數(shù)約為60人.
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校九年級學生立定跳遠水平,隨機抽取該年級50名學生進行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
學生立定跳遠測試成績的頻數(shù)分布表
分組 | 頻數(shù) |
1.2≤x<1.6 | a |
1.6≤x<2.0 | 12 |
2.0≤x<2.4 | b |
2.4≤x<2.8 | 10 |
請根據(jù)圖表中所提供的信息,完成下列問題:
(1)表中a= ,b= ,樣本成績的中位數(shù)落在 范圍內;
(2)請把頻數(shù)分布直方圖補充完整;
(3)該校九年級共有1000名學生,估計該年級學生立定跳遠成績在2.4≤x<2.8范圍內的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子中,裝有除顏色外都完全相同的4個紅球和若干個黃球.
如果從袋中任意摸出一個球是紅球的概率為,那么袋中有黃球多少個?
在的條件下如果從袋中摸出一個球記下顏色后放回,再摸出一個球,用列表或畫樹狀圖的方法求出兩次摸出不同顏色球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD⊥AB,
(1)圖①中共有 對相似三角形,寫出來分別為 (不需證明);
(2)已知AB=10,AC=8,請你求出CD的長;
(3)在(2)的情況下,如果以AB為x軸,CD為y軸,點D為坐標原點O,建立直角坐標系(如圖②),若點P從點C出發(fā),以每秒1個單位的速度沿線段CB運動,點Q從點B出發(fā),以每秒1個單位的速度沿線段BA運動,其中一點最先到達線段的端點時,兩點即刻同時停止運動;設運動時間為t秒,是否存在點P,使以點B,P,Q為頂點的三角形與△ABC相似?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 臺州市某水產養(yǎng)殖戶進行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價p(元/千克)與時間第t(天)之間的函數(shù)關系為:p= t+16,日銷售量y(千克)與時間第t(天)之間的函數(shù)關系如圖所示:
(1)求日銷售量y與時間t的函數(shù)關系式?
(2)哪一天的日銷售利潤最大?最大利潤是多少?
(3)該養(yǎng)殖戶有多少天日銷售利潤不低于2400元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某手機生產廠家根據(jù)其產品在市場上的銷售情況,決定對原來以每部2000元出售的一款彩屏手機進行調價,并按新單價的八折優(yōu)惠出售,結果每部手機仍可獲得實際銷售價的20%的利潤(利潤=銷售價—成本價).已知該款手機每部成本價是原銷售單價的60%.
(1)求調整后這款彩屏手機的新單價是每部多少元?讓利后的實際銷售價是每部多少元?
(2)為使今年按新單價讓利銷售的利潤不低于20萬元,今年至少應銷售這款彩屏手機多少部?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,過點D作DE∥BC交AB于點E,DF∥AB交BC于點F.
(1)求證:四邊形BEDF為菱形;
(2)如果∠A=90°,∠C=30°,BD=6,求菱形BEDF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AD=4,E在AB上且AB=4BE,連接CE,作BF⊥CE于F,正方形對角線交于O點,連接OF,將△COF沿CE翻折得△CGF,連接BG,則BG的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C是以AB為直徑的⊙O上一動點,過點C作⊙O直徑CD,過點B作BE⊥CD于點E.已知AB=6cm,設弦AC的長為xcm,B,E兩點間的距離為ycm(當點C與點A或點B重合時,y的值為0).
小冬根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小冬的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:
經(jīng)測量m的值是(保留一位小數(shù)).
(2)建立平面直角坐標系,描出表格中所有各對對應值為坐標的點,畫出該函數(shù)的圖象;
(3)在(2)的條件下,當函數(shù)圖象與直線相交時(原點除外),∠BAC的度數(shù)是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com