【題目】如圖,在△ABC中,DE是邊AB的垂直平分線,交AB于E、交AC于D,連接BD.
(1)若∠ABC=∠C,∠A=40°,求∠DBC的度數(shù);
(2)若AB=AC,且△BCD的周長為18cm,△ABC的周長為30cm,求BE的長.
【答案】
(1)解:∵∠ABC=∠C,∠A=40°,
∴∠ABC=(180°﹣40°)÷2=70°.
∵DE是邊AB的垂直平分線,
∴AD=DB,
∴∠ABD=∠A=40°,
∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°
(2)解:∵DE是邊AB的垂直平分線,
∴AD=DB,AE=BE,
∵△BCD的周長為18cm,
∴AC+BC=AD+DC+BC=DB+DC+BC=18cm.
∵△ABC的周長為30cm,
∴AB=30﹣(AC+BC)=30﹣18=12cm,
∴BE=12÷2=6cm
【解析】(1)首先計算出∠ABC的度數(shù),再根據(jù)線段垂直平分線上任意一點,到線段兩端點的距離相等可得AD=BD,進而可得∠ABD=∠A=40°,然后可得答案;(2)根據(jù)線段垂直平分線的性質(zhì)可得AD=DB,AE=BE,然后再計算出AC+BC的長,再利用△ABC的周長為30cm可得AB長,進而可得答案.
【考點精析】關于本題考查的三角形的內(nèi)角和外角和線段垂直平分線的性質(zhì),需要了解三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D、F分別在AB、AC上,CF=CB,連接CD,將線段CD繞點C按順時針方向旋轉90°后得CE,連接EF.
(1)求證:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明用的練習本可以到甲乙兩個商店購買,已知商店的標價都是每本2元,甲店的優(yōu)惠條件是:購買10本以上,從第11本開始按標價的70%出售,乙商店的優(yōu)惠條件是:從第一本起按標價的80%出售. ①若小明要購買x本練習本,則小明到甲店購買,需付款元,當?shù)揭业曩徺I時,需付款元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】武漢市某氣象觀測點記錄了5天的平均氣溫(單位:℃)分別是25、20、18、23、27,這組數(shù)據(jù)的中位數(shù)是______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校七年級學生到野外活動,為測量一池塘兩端A,B的距離,甲、乙、丙三位同學分別設計出如下幾種方案:
甲:如圖①,先在平地取一個可直接到達A,B的點C,再連接AC,BC,并分別延長AC至D,BC至E,使DC=AC,EC=BC,最后測出DE的長即為A,B的距離.
乙:如圖②,先過點B作AB的垂線BF,再在BF上取C,D兩點,使BC=CD,接著過點D作BD的垂線DE,交AC的延長線于點E,則測出DE的長即為A,B的距離.
丙:如圖③,過點B作BD⊥AB,再由點D觀測,在AB的延長線上取一點C,使∠BDC=∠BDA,這時只要測出BC的長即為A,B的距離.
(1)以上三位同學所設計的方案,可行的有;
(2)請你選擇一可行的方案,說說它可行的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點D是AB的中點,點E是AB邊上一點.
(1)如圖①,BF垂直CE于點F,交CD于點G,試說明AE=CG;
(2)如圖②,作AH垂直于CE的延長線,垂足為H,交CD的延長線于點M,則圖中與BE相等的線段是 , 并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,點A的坐標是(0,2),點B是x軸上的一個動點,始終保持△ABC是等邊三角形(點A、B、C按逆時針排列),當點B運動到原點O處時,則點C的坐標是 . 隨著點B在x軸上移動,點C也隨之移動,則點C移動所得圖象的解析式是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com