【題目】中, ,點(diǎn)是直線上一點(diǎn)(不與重合),以為一邊在右側(cè),使,連接

(1)如圖1,當(dāng)點(diǎn)在線段上,如果,則 度;

(2)設(shè)

①如圖2,當(dāng)點(diǎn)在線段上移動(dòng),則之間有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由;

②當(dāng)點(diǎn)在直線上移動(dòng),則之間有怎樣的數(shù)量關(guān)系?請(qǐng)畫出圖形并直接寫出相應(yīng)的結(jié)論.

【答案】(1)90; (2) .②

【解析】試題分析:(1)利用等腰三角形證明ABDACE,所以ECA=DBA,所以DCE=90°.(2)方法類似(1)證明ABD≌△ACE,所以B=ACE,再利用角的關(guān)系求 3)同理方法類似(1.

試題解析:

解:(1) 90 .

DAE=BAC ,所以∠BAD=EAC,AB=AC,AD=AE,所以ABDACE,所以ECA=DBA,所以ECA=90°.

2

理由:∵∠BAC=∠DAE,

∴∠BAC-∠DAC=∠DAE-∠DAC,BAD=∠CAE,

AB=AC,AD=AE

∴△ABD≌△ACE,

∴∠B=ACE.∴∠B+∠ACB=∠ACE+ACB

,

3)圖形正確可知

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=4,BAD的平分線與BC的延長(zhǎng)線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),DGAE,垂足為G,若DG=1,則AE的邊長(zhǎng)為( ).

A.2 B.4 C.4 D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場(chǎng).現(xiàn)有甲、乙兩個(gè)工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個(gè)工廠了解情況,獲得如下信息:

信息一:甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5.

根據(jù)以上信息,求甲、乙兩個(gè)工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ABC和∠ACB的角平分線BE、CF相交于點(diǎn)I

(1)∠BIC=120°,求∠A的度數(shù)

(2)當(dāng)∠BIC=135°,則∠A= 。

(3)請(qǐng)你用數(shù)學(xué)表達(dá)式歸納出∠BIC與∠A的關(guān)系式,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10個(gè)球設(shè)計(jì)一個(gè)摸球游戲,使得:

1)摸到紅球的機(jī)會(huì)是

2)摸到紅球的機(jī)會(huì)是,摸到黃球的機(jī)會(huì)是

3)你還能設(shè)計(jì)一個(gè)符合下列條件的游戲嗎?為什么?

摸到紅球的機(jī)會(huì)是,摸到黃球的機(jī)會(huì)是,摸到綠球的機(jī)會(huì)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中,G是AD延長(zhǎng)線上的一點(diǎn),且DG=AD,動(dòng)點(diǎn)M從A點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿著A→C→G的路線向G點(diǎn)勻速運(yùn)動(dòng)(M不與A,G重合),設(shè)運(yùn)動(dòng)時(shí)間為t秒,連接BM并延長(zhǎng)AG于N.

(1)是否存在點(diǎn)M,使△ABM為等腰三角形?若存在,分析點(diǎn)M的位置;若不存在,請(qǐng)說明理由;
(2)當(dāng)點(diǎn)N在AD邊上時(shí),若BN⊥HN,NH交∠CDG的平分線于H,求證:BN=HN;
(3)過點(diǎn)M分別作AB,AD的垂線,垂足分別為E,F(xiàn),矩形AEMF與△ACG重疊部分的面積為S,求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)=

例如12可以分解成1×12,2×6或3×4,因?yàn)?2﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=

⑴如果一個(gè)正整數(shù)m是另外一個(gè)正整數(shù)n的平方,我們稱正整數(shù)m是完全平方數(shù).

求證:對(duì)任意一個(gè)完全平方數(shù)m,總有F(m)=1;

⑵如果一個(gè)兩位正整數(shù)t,t =10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為54,那么我們稱這個(gè)數(shù)t為“吉祥數(shù)”,求所有的“吉祥數(shù)”;

⑶在⑵所得“吉祥數(shù)”中,求 F(t)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校車安全是近幾年社會(huì)關(guān)注的重大問題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動(dòng)小組設(shè)計(jì)了如下檢測(cè)公路上行駛的汽車速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車道L上確定點(diǎn)D,使CD與L垂直,測(cè)得CD的長(zhǎng)等于24米,在L上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的長(zhǎng)(結(jié)果保留根號(hào));
(2)已知本路段對(duì)校車限速為45千米/小時(shí),若測(cè)得某輛校車從A到B用時(shí)2秒,這輛校車是否超速?說明理由.(參考數(shù)據(jù): ≈1.73, ≈1.41)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(  )

A.點(diǎn)P(3,﹣5)x軸的距離為﹣5

B.在平面直角坐標(biāo)系內(nèi),(1,2)(2,﹣1)表示同一個(gè)點(diǎn)

C.x=0,則點(diǎn)P(x,y)x軸上

D.在平面直角坐標(biāo)系中,有且只有一個(gè)點(diǎn)既在x軸上,又在y軸上

查看答案和解析>>

同步練習(xí)冊(cè)答案