【題目】已知:如圖,在ABC中,∠B=90°,AB=5cm,BC=7cm.點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B1cm/s的速度移動,點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C2cm/s的速度移動.

(1)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,PBQ的面積等于6cm2?

(2)在(1)中,PQB的面積能否等于8cm2?說明理由.

【答案】(1)23;(2)不能.

【解析】

(1)設(shè)經(jīng)過x秒鐘,△PBQ的面積等于6cm2,根據(jù)點(diǎn)PA點(diǎn)開始沿AB邊向點(diǎn)B1cm/s的速度移動,點(diǎn)QB點(diǎn)開始沿BC邊向點(diǎn)C2cm/s的速度移動,表示出BPBQ的長可列方程求解.

(2)通過判定得到的方程的根的判別式即可判定能否達(dá)到8cm2

解:(1)設(shè) 經(jīng)過x秒以后PBQ面積為6cm2,則

×(5﹣x)×2x=6,

整理得:x2﹣5x+6=0,

解得:x=2x=3.

答:23秒后PBQ的面積等于6cm2

(2)設(shè)經(jīng)過x秒以后PBQ面積為8cm2,則

×(5﹣x)×2x=8,

整理得:x2﹣5x+8=0,

=25﹣32=﹣7<0,

所以,此方程無解,

PQB的面積不能等于8cm2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為線段上一動點(diǎn)(不與點(diǎn),重合),在同側(cè)分別作等邊和等邊,交于點(diǎn),交于點(diǎn),交于點(diǎn),連接.下列五個(gè)結(jié)論:①;②;③;④DE=DP;⑤.其中正確結(jié)論的個(gè)數(shù)是( )

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊形如四邊形ABCD的草地中,AB3mBC4m,CD12m,DA13m,且∠ABC90°,要以AC、CDDA為邊制作圍欄,問圍欄長多少米,草地面積多大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,是關(guān)于的方程的兩實(shí)根,實(shí)數(shù)、、、的大小關(guān)系可能是(

A. α<a<b<β B. a<α<β<b C. a<α<b<β D. α<a<β<b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017浙江省湖州市,第23題,10分)湖州素有魚米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢,一次性收購了20000kg淡水魚,計(jì)劃養(yǎng)殖一段時(shí)間后再出售.已知每天放養(yǎng)的費(fèi)用相同,放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元(總成本=放養(yǎng)總費(fèi)用+收購成本).

(1)設(shè)每天的放養(yǎng)費(fèi)用是a萬元,收購成本為b萬元,求ab的值;

(2)設(shè)這批淡水魚放養(yǎng)t天后的質(zhì)量為mkg),銷售單價(jià)為y/kg.根據(jù)以往經(jīng)驗(yàn)可知:mt的函數(shù)關(guān)系為;yt的函數(shù)關(guān)系如圖所示.

①分別求出當(dāng)0≤t≤5050<t≤100時(shí),yt的函數(shù)關(guān)系式;

②設(shè)將這批淡水魚放養(yǎng)t天后一次性出售所得利潤為W元,求當(dāng)t為何值時(shí),W最大?并求出最大值.(利潤=銷售總額﹣總成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙倆射擊運(yùn)動員進(jìn)行10次射擊,甲的成績是7,78,9,8,9,10,9,9,9,乙的成績?nèi)鐖D所示.則甲、乙射擊成績的方差之間關(guān)系是 (填“=”,).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形,邊,.將此長方形沿折疊,使點(diǎn)與點(diǎn)重合,點(diǎn)落在點(diǎn)處.

1)試判斷的形狀,并說明理由;

2)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,下列結(jié)論錯(cuò)誤的是(

A. b2-4ac>0 B. a-b+c<0 C. abc<0 D. 2a+b>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BC=5,⊙O與RtABC的三邊AB、BC、AC分別相切于點(diǎn)D、E、F,若O的半徑r=2,則RtABC的周長為_____

查看答案和解析>>

同步練習(xí)冊答案