【題目】(2017浙江省湖州市,第23題,10分)湖州素有魚米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢(shì),一次性收購(gòu)了20000kg淡水魚,計(jì)劃養(yǎng)殖一段時(shí)間后再出售.已知每天放養(yǎng)的費(fèi)用相同,放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元(總成本=放養(yǎng)總費(fèi)用+收購(gòu)成本).

(1)設(shè)每天的放養(yǎng)費(fèi)用是a萬元,收購(gòu)成本為b萬元,求ab的值;

(2)設(shè)這批淡水魚放養(yǎng)t天后的質(zhì)量為mkg),銷售單價(jià)為y/kg.根據(jù)以往經(jīng)驗(yàn)可知:mt的函數(shù)關(guān)系為yt的函數(shù)關(guān)系如圖所示.

①分別求出當(dāng)0≤t≤5050<t≤100時(shí),yt的函數(shù)關(guān)系式;

②設(shè)將這批淡水魚放養(yǎng)t天后一次性出售所得利潤(rùn)為W元,求當(dāng)t為何值時(shí),W最大?并求出最大值.(利潤(rùn)=銷售總額﹣總成本)

【答案】1a的值為0.04,b的值為30;(2)①;②放養(yǎng)55天時(shí),W最大,最大值為180250元.

【解析】試題分析:(1)由放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元可得答案;

(2)①0≤t≤50、50<t≤100兩種情況,結(jié)合函數(shù)圖象利用待定系數(shù)法求解可得;

就以上兩種情況,根據(jù)利潤(rùn)=銷售總額﹣總成本列出函數(shù)解析式,依據(jù)一次函數(shù)性質(zhì)和二次函數(shù)性質(zhì)求得最大值即可得.

試題解析:(1)由題意,得:,解得,答:a的值為0.04,b的值為30;

(2)①當(dāng)0≤t≤50時(shí),設(shè)yt的函數(shù)解析式為y=kt+n,將(0,15)、(50,25)代入,得:,解得:,∴yt的函數(shù)解析式為

當(dāng)50<t≤100時(shí),設(shè)yt的函數(shù)解析式為y=at+b,將點(diǎn)(50,25)、(100,20)代入,得:,解得:,∴yt的函數(shù)解析式為y=﹣t+30;

綜上所述: ;

由題意,當(dāng)0≤t≤50時(shí),W=20000(t+15)﹣(400t+300000)=3600t,∵3600>0,∴當(dāng)t=50時(shí),W最大值=180000(元);

當(dāng)50<t≤100時(shí),W=(100t+15000)(﹣t+30)﹣(400t+300000)

=﹣10t2+1100t+150000

=﹣10(t﹣55)2+180250,∵﹣10<0,∴當(dāng)t=55時(shí),W最大值=180250(元)

綜上所述,放養(yǎng)55天時(shí),W最大,最大值為180250元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC 中,∠ACB=90°,BC=2,AC=3,以點(diǎn)C為圓心、CB為半徑的圓交AB于點(diǎn)D,過點(diǎn)AAECD,交BC延長(zhǎng)線于點(diǎn)E.

(1)求CE的長(zhǎng);

(2)P CE延長(zhǎng)線上一點(diǎn),直線AP、CD交于點(diǎn)Q.

①如果ACQ ∽△CPQ,求CP的長(zhǎng);

②如果以點(diǎn)A為圓心,AQ為半徑的圓與⊙C相切,求CP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①、圖②、圖③均是4×4的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),每個(gè)小正方形的邊長(zhǎng)均為1.

(1)在圖①、圖②中,以格點(diǎn)為頂點(diǎn),線段AB為一邊,分別畫一個(gè)平行四邊形和菱形,并直接寫出它們的面積.(要求兩個(gè)四邊形不全等)

(2)在圖③中,以點(diǎn)A為頂點(diǎn),另外三個(gè)頂點(diǎn)也在格點(diǎn)上,畫一個(gè)面積最大的正方形,并直接寫出它的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:

(1)當(dāng)有n張桌子時(shí),兩種擺放方式各能坐多少人?

(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個(gè)餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)A、B、P分別在兩坐標(biāo)軸上,∠APB=60°,PB=m,PA=2m,以點(diǎn)P為圓心、PB為半徑作⊙P,作∠OBP的平分線分別交⊙P、OPC、D,連接AC.

(1)求證:直線AB⊙P的切線.

(2)設(shè)△ACD的面積為S,求S關(guān)于m的函數(shù)關(guān)系式.

(3)如圖2,當(dāng)m=2時(shí),把點(diǎn)C向右平移一個(gè)單位得到點(diǎn)T,過O、T兩點(diǎn)作⊙Qx軸、y軸于E、F兩點(diǎn),若M、N分別為兩弧的中點(diǎn),作MG⊥EF,NH⊥EF,垂足為G、H,試求MG+NH的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)庫(kù)存若干套桌椅,準(zhǔn)備修理后支援貧困山區(qū)學(xué)!,F(xiàn)有甲、乙兩木工組,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲單獨(dú)修完這些桌椅比乙單獨(dú)修完多用20天,學(xué)校每天付甲組80元修理費(fèi),付乙組120元修理費(fèi)。

(1)該中學(xué)庫(kù)存多少套桌椅?

(2)在修理過程中,學(xué)校要派一名工人進(jìn)行質(zhì)量監(jiān)督,學(xué)校負(fù)擔(dān)他每天10元生活補(bǔ)助費(fèi),現(xiàn)有三種修理方案:a、由甲單獨(dú)修理;b、由乙單獨(dú)修理;c、甲、乙合作同時(shí)修理。你認(rèn)為哪種方案省時(shí)又省錢?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象頂點(diǎn)在軸上,且,與一次函數(shù)的圖象交于軸上一點(diǎn)和另一交點(diǎn).

求拋物線的解析式;

點(diǎn)為線段上一點(diǎn),過點(diǎn)軸,垂足為,交拋物線于點(diǎn),請(qǐng)求出線段的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD//BC,∠A=∠C,CD=2ADBEAD于點(diǎn)E,FCD的中點(diǎn),連接EFBF

(1)求證:四邊形ABCD是平行四邊形;

(2)求證:BF平分∠ABC

(3)請(qǐng)判斷△BEF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校舉行演講比賽,選出了10名同學(xué)擔(dān)任評(píng)委,并事先擬定從如下4個(gè)方案中選擇合理的方案來確定每個(gè)演講者的最后得分(滿分為10分):

方案①:所有評(píng)委所給分的平均數(shù);

方案②:在所有評(píng)委所給分中,去掉一個(gè)最高分和一個(gè)最低分,然后再計(jì)算其余給分的平均數(shù);

方案③:所有評(píng)委所給分的中位數(shù);

方案④:所有評(píng)委所給分的眾數(shù)。

為了探究上述方案的合理性,先地某個(gè)同學(xué)的演講成績(jī)進(jìn)行了統(tǒng)計(jì)實(shí)驗(yàn),如圖是這個(gè)同學(xué)的得分統(tǒng)計(jì)圖。

1)分別按上述4個(gè)方案計(jì)算這個(gè)同學(xué)演講的最后得分;

2)根據(jù)(1)中的結(jié)果,請(qǐng)用統(tǒng)計(jì)的知識(shí)說明哪些方案不適合作為這個(gè)同學(xué)演講的最后得分,并說明你的理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案