【題目】如圖,AE∥BF,AC平分∠BAE,交BF于C.
(1)尺規(guī)作圖:過(guò)點(diǎn)B作AC的垂線,交AC于O,交AE于D,(保留作圖痕跡,不寫(xiě)作法);
(2)在(1)的圖形中,找出兩條相等的線段,并予以證明.

【答案】
(1)解:如圖,BO為所作;


(2)解:AB=AD=BC.證明如下:

∵AE∥BF,

∴∠EAC=∠BCA,

∵AC平分∠BAE,

∴∠EAC=∠BAC,

∴∠BCA=∠BAC,

∴BA=BC,

∵BD⊥AO,AO平分∠BAD,

∴AB=AD,

∴AB=AD=BC


【解析】(1)利用基本作圖作BO⊥AC即可;(2)先利用平行線的性質(zhì)得∠EAC=∠BCA,再根據(jù)角平分線的定義和等量代換得到∠BCA=∠BAC,則BA=BC,然后根據(jù)等腰三角形的判定方法由BD⊥AO,AO平分∠BAD得到AB=AD,所以AB=AD=BC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把矩形紙片ABCD沿EF翻折,點(diǎn)A恰好落在BC邊的A′處,若AB= ,∠EFA=60°,則四邊形A′B′EF的周長(zhǎng)是(
A.1+3
B.3+
C.4+
D.5+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只螞蟻在一個(gè)半圓形的花壇的周邊尋找食物,如圖1,螞蟻從圓心O出發(fā),按圖中箭頭所示的方向,依次爬完下列三條線路:(1)線段OA、(2)半圓弧AB、(3)線段BO后,回到出發(fā)點(diǎn)。已知螞蟻在爬行過(guò)程中保持勻速,且在尋找到食物后停下來(lái)吃了2分鐘。螞蟻離出發(fā)點(diǎn)的距離s(螞蟻所在位置與O點(diǎn)之間線段的長(zhǎng)度)與時(shí)間t之間的圖象如圖2所示,問(wèn):

(1)花壇的半徑是_______米,螞蟻是在上述三條線路中的哪條上尋找到了食物_________(填(1)、(2)、或(3));

(2)螞蟻的速度是_______/分鐘;

(3)螞蟻從O點(diǎn)出發(fā),直到回到O點(diǎn),一共用時(shí)多少分鐘?(

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論不正確的是(
A.a<0
B.c>0
C.a+b+c>0
D.b2﹣4ac>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖的三角形紙片中,AB=AC,BC=12cm,∠C=30°,折疊這個(gè)三角形,使點(diǎn)B落在AC的中點(diǎn)D處,折痕為EF,那么BF的長(zhǎng)為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校八年級(jí)學(xué)生在學(xué)習(xí)《數(shù)據(jù)的分析》后,進(jìn)行了檢測(cè),現(xiàn)將該校八(1)班學(xué)生的成績(jī)統(tǒng)計(jì)如下表,并繪制成條形統(tǒng)計(jì)圖(不完整).

分?jǐn)?shù)(分)

人數(shù)(人)

68

4

78

7

80

3

88

5

90

10

96

6

100

5


(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)該班學(xué)生成績(jī)的平均數(shù)為86.85分,寫(xiě)出該班學(xué)生成績(jī)的中位數(shù)和眾數(shù);
(3)該校八年級(jí)共有學(xué)生500名,估計(jì)有多少學(xué)生的成績(jī)?cè)?6分以上(含96分)?
(4)小明的成績(jī)?yōu)?8分,他的成績(jī)?nèi)绾,為什么?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有長(zhǎng)度分別為2cm,3cm,4cm,7cm的四條線段,任取其中三條能組成三角形的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a>0)的頂點(diǎn)為P,其圖像與x軸有兩個(gè)交點(diǎn)A(﹣m,0),B(1,0),交y軸于點(diǎn)C(0,﹣3am+6a),以下說(shuō)法:
①m=3;
②當(dāng)∠APB=120°時(shí),a=
③當(dāng)∠APB=120°時(shí),拋物線上存在點(diǎn)M(M與P不重合),使得△ABM是頂角為120°的等腰三角形;
④拋物線上存在點(diǎn)N,當(dāng)△ABN為直角三角形時(shí),有a≥
正確的是( )
A.①②
B.③④
C.①②③
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,大樓外墻有高為AB的廣告牌,由距離大樓20米的點(diǎn)C(即CD=20米)觀察它的頂部A的仰角是55°,底部B的仰角是42°,求AB的高度.(參考數(shù)據(jù):sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

查看答案和解析>>

同步練習(xí)冊(cè)答案