【題目】已知一張三角形紙片ABC(如圖甲),其中AB=AC.將紙片沿過點B的直線折疊,使點C落到AB邊上的E點處,折痕為BD(如圖乙).再將紙片沿過點E的直線折疊,點A恰好與點D重合,折痕為EF(如圖丙).原三角形紙片ABC中,∠ABC的大小為______°.
科目:初中數(shù)學 來源: 題型:
【題目】動物學家通過大量的調(diào)查估計出,某種動物活到20歲的概率為0.8,活到25歲的概率是0.5,活到30歲的概率是0.3.現(xiàn)年20歲的這種動物活到25歲的概率為多少?現(xiàn)年25歲的這種動物活到30歲的概率為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們把正六邊形對角線的交點稱為它的中心,正六邊形的頂點及它的中心稱作特征點,如圖(1)有六個頂點和一個中心點,因此共有7個特征點,照圖(1)的方式繼續(xù)排列正六邊形,使得相鄰兩個正六邊形的一邊重合,這樣得到圖(2),圖(3)…
觀察以上圖形得到表:
圖形的名稱 | 特征點的個數(shù) |
圖1 | 7 |
圖2 | 12 |
… | … |
(1)第n個圖形的特征點有多少個?
(2)第100個圖形的特征點有多少個?
(3)第幾個圖形有2017個特征點?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)等腰三角形一腰上的中線將這個等腰三角形的周長分成15 cm和6 cm兩部分.求等腰三角形的底邊長.
(2)已知等腰三角形中,有一個角比另一個角的2倍少20°,求頂角的度數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
對于平面圖形A,如果存在一個圓,使圖形A上的任意一點到圓心的距離都不大于這個圓的半徑,則稱圖形A被這個圓所覆蓋.
對于平面圖形A,如果存在兩個或兩個以上的圓,使圖形A上的任意一點到其中某個圓的圓心的距離都不大于這個圓的半徑,則稱圖形A被這些圓所覆蓋.
例如:圖1中①的三角形被一個圓覆蓋,②中的四邊形被兩個圓所覆蓋.
回答下列問題:
(1)邊長為1 cm的正方形被一個半徑為r的圓所覆蓋,r的最小值是______ cm;
(2)邊長為1 cm的等邊三角形被一個半徑為r的圓所覆蓋,r的最小值是_____ cm;
(3)長為2 cm,寬為1 cm的矩形被兩個半徑均為r的圓所覆蓋,r的最小值是_____ cm.這兩個圓的圓心距是_____ cm.。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示,現(xiàn)將△ABC平移,使點A變換為點A′,點B′、C′分別是B、C的對應點.
(1)請畫出平移后的△A′B′C′,并求△A′B′C′的面積;
(2)若連接AA′,CC′,則這兩條線段之間的關系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店第一次用600元購進2B鉛筆若干支,第二次又用600元購進該款鉛筆,但這次每支的進價是第一次進價的倍,購進數(shù)量比第一次少了30支.
(1)求第一次每支鉛筆的進價是多少元?
(2)若要求這兩次購進的鉛筆按同一價格全部銷售完畢后獲利不低于420元,問每支售價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
解答“已知,且,,確定的取值范圍”有如下解,
解:∵,
∴.
又∵,
∴.
∴.
又∵,
∴,①
同理得:.②
由①②得.
∴的取值范圍是.
請按照上述方法,完成下列問題:
()已知,且,,求的取值范圍.
()已知,,若,且,求得取值范圍(結(jié)果用含的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com