【題目】閱讀下面材料:

對于平面圖形A,如果存在一個圓,使圖形A上的任意一點到圓心的距離都不大于這個圓的半徑,則稱圖形A被這個圓所覆蓋.

對于平面圖形A,如果存在兩個或兩個以上的圓,使圖形A上的任意一點到其中某個圓的圓心的距離都不大于這個圓的半徑,則稱圖形A被這些圓所覆蓋.

例如:圖1中①的三角形被一個圓覆蓋,②中的四邊形被兩個圓所覆蓋.

回答下列問題:

(1)邊長為1 cm的正方形被一個半徑為r的圓所覆蓋,r的最小值是______ cm;

(2)邊長為1 cm的等邊三角形被一個半徑為r的圓所覆蓋,r的最小值是_____ cm;

(3)長為2 cm,寬為1 cm的矩形被兩個半徑均為r的圓所覆蓋,r的最小值是_____ cm.這兩個圓的圓心距是_____ cm.。

【答案】1) ;

(2)

(3) , 1.

【解析】試題分析:(1)邊長為1 cm的正方形被一個半徑為r的圓所覆蓋,則r應(yīng)大于等于正方形對角線的一半,即半徑最小為;(2)當圓外接三角形時圓的半徑最小,如圖,根據(jù)勾股定理可求得圓的半徑是;(3)根據(jù)對稱性可知兩圓的交點分別是ADBC的中點,將矩形分成兩個相等的小正方形,圓的最小半徑就是小正方形的對角線的一半,圓心距就是小正方形的邊長.

1)以正方形的對角線為直徑做圓是覆蓋正方形的最小圓,半徑r的最小值=;

(2) 邊長為1 cm的等邊三角形被一個半徑為r的圓所覆蓋,這個最小的圓是正三角形的外接圓,如圖作三角形ABC的高AD構(gòu)成直角三角形ABD,斜邊AB=1,BD=,

所以AD=,因為三角形是正三角形,

所以∠ABC=60°,O是外心,所以∠OBC=30°,OD=OB,

設(shè)OA=OB=x,則OD=x,

在直角三角形OBD中,根據(jù)勾股定理列方程:,

解得:x=.

(3)如圖:矩形ABCDAB=1,BC=2,

則覆蓋ABCD的兩個圓與矩形交于E、F兩點,

由對稱性知E、F分別是ADBC的中點,

則四邊形ABFE、EFCD是兩個邊長為1的正方形,

所以圓的半徑r=, 兩圓心距= 1.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC三個頂點的坐標分別為(1,2),(-2,3),(-1,0),把它們的橫坐標和縱坐標都擴大到原來的2倍,得到點, , .下列說法正確的是(  )

A. 與△ABC是位似圖形,位似中心是點(1,0)

B. 與△ABC是位似圖形,位似中心是點(0,0)

C. 與△ABC是相似圖形,但不是位似圖形

D. 與△ABC不是相似圖形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了從甲、乙兩名選手中選拔一人參加射擊比賽,現(xiàn)對他們進行一次測驗,兩個人在相同條件下各射靶10次,為了比較兩人的成績,制作了如下統(tǒng)計圖表:

甲、乙射擊成績統(tǒng)計表

平均數(shù)

中位數(shù)

方差

命中10環(huán)的次數(shù)

7

1

(1)請補全上述圖表(請直接在表中填空和補全折線圖);

(2)如果規(guī)定成績較穩(wěn)定者勝出,你認為誰將勝出?說明你的理由;

(3)如果希望(2)中的另一名選手勝出,根據(jù)圖表中的信息,應(yīng)該制定怎樣的評判規(guī)則?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀解題過程,回答問題.

如圖,OC在∠AOB內(nèi),AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度數(shù).

:O點作射線OM,使點M,O,A在同一直線上.

因為∠MOD+BOD=90°,BOC+BOD=90°,所以∠BOC=MOD,

所以∠AOD=180°-BOC=180°-30°=150°.

(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?

(2)如果∠AOB=DOC=x°,AOD=y°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一張三角形紙片ABC(如圖甲),其中AB=AC.將紙片沿過點B的直線折疊,使點C落到AB邊上的E點處,折痕為BD(如圖乙).再將紙片沿過點E的直線折疊,點A恰好與點D重合,折痕為EF(如圖丙).原三角形紙片ABC中,∠ABC的大小為______°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC在坐標平面內(nèi),三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中, 每個小正方形的邊長是1個單位長度)

(1)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標;

(2)以點B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點的坐標及△A2BC2的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線l1l2,直線l3和直線l1l2交于點CD,點P是直線l3上一動點

1)如圖1,當點P在線段CD上運動時,PACAPB,PBD之間存在什么數(shù)量關(guān)系?請你猜想結(jié)論并說明理由.

2)當點PC、D點的外側(cè)運動時(P與點C、D不重合,如圖2和圖3),上述(1)中的結(jié)論是否還成立?若不成立,請直接寫出PAC,APB,PBD之間的數(shù)量關(guān)系,不必寫理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖

① ∵

______// ___________________________

② ∵∠DAB+∠ABC=180°

_____// _______________________

③∵ AB // CD

∴∠_____+∠ABC=180°___________________

④∵ ______// ______

∴∠C=∠3_______________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,半徑均為1個單位長度的半圓O1、O2O3,組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2015秒時,點P的坐標是( )

A. 20140B. 2015,﹣1C. 2015,1D. 2016,0

查看答案和解析>>

同步練習冊答案