【題目】用配方法解方程x2+4x+1=0,配方后的方程是( )
A.(x+2)2=5
B.(x﹣2)2=3
C.(x﹣2)2=5
D.(x+2)2=3

【答案】D
【解析】解:∵x2+4x+1=0,
∴x2+4x=﹣1,
∴x2+4x+4=﹣1+4,即(x+2)2=3,
故選:D.
【考點精析】本題主要考查了配方法的相關(guān)知識點,需要掌握左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒問題.左邊分解右合并,直接開方去解題才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,BAC=90°,將ABC繞點C逆時針旋轉(zhuǎn),旋轉(zhuǎn)后的圖形是ABC,點A的對應(yīng)點A落在中線AD上,且點AABC的重心,AB與BC相交于點E,那么BE:CE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“皮克定理”是用來計算頂點在整點的多邊形面積的公式,公式表達(dá)式為S=a+ ﹣1,孔明只記得公式中的S表示多邊形的面積,a和b中有一個表示多邊形邊上(含頂點)的整點個數(shù),另一個表示多邊形內(nèi)部的整點個數(shù),但不記得究竟是a還是b表示多邊形內(nèi)部的整點個數(shù),請你選擇一些特殊的多邊形(如圖1)進(jìn)行驗證,得到公式中表示多邊形內(nèi)部的整點個數(shù)的字母是 , 并運用這個公式求得圖2中多邊形的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一塊矩形鐵皮,將四個角各剪去一個邊長為2米的正方形后(剩下的部分做成一個)容積為90立方米的無蓋長方體箱子,已知長方體箱子底面積的長比寬多4米,求矩形鐵皮的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把“垂直于同一條直線的兩條直線平行”改寫成“如果……那么……”的形式是_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】樂平街上新開張了一家好又多超市,這個星期天,張明和媽媽去這家新開張的超市買東西,如圖反映了張明從家到超市的時間t(分鐘)與距離s(米)之間關(guān)系的一幅圖.

1)圖中反映了哪兩個變量之間的關(guān)系?超市離家多遠(yuǎn)?

2)張明從家出發(fā)到達(dá)超市用了多少時間?從超市返回家花了多少時間?

3)張明從家出發(fā)后20分鐘到30分鐘內(nèi)可能在做什么?

4)張明從家到超市時的平均速度是多少?返回時的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)﹣0.35,5,0,﹣2,﹣37 中,正數(shù)的個數(shù)是( )

A. 1 個 B. 2 個 C. 3 個 D. 4 個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面直角坐標(biāo)系中,A(a,0),C(b,2),過C作CB⊥x軸,且滿足(a+b)2+ =0.

(1)求三角形ABC的面積.
(2)若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,求∠AED的度數(shù).
(3)在y軸上是否存在點P,使得三角形ABC和三角形ACP的面積相等?若存在,求出P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a,b都是實數(shù),且a<b,則下列不等式的變形正確的是(
A.a+x>b+x
B.﹣a+1<﹣b+1
C.3a<3b
D.

查看答案和解析>>

同步練習(xí)冊答案