如圖,平行四邊形ABCD中,AD=5cm,AB⊥BD,點O是兩條對角
線的交點,OD=2,則AB=     ▲    cm.
3
根據(jù)平行四邊形的對角線互相平分可得出BD的長度,繼而根據(jù)勾股定理可得出AB的長度.
解:∵ABCD是平行四邊形,
∴OD=OB=1/2BD=4,
在RT△ADB中,AB==3.
故答案為:3.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)
如圖,一艘輪船由A港沿北偏東方向航行10km至B港,再沿北偏西方向航行10km到達C港.
   (1)求A、C兩港之間的距離(精確到1km)
(2)求點C相對于點A位置.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(6分)如圖,在△ABC中,AB=AC,AD⊥BC,垂足為D,AE∥BC, DE∥AB.

證明:(1)AE=DC;
(2)四邊形ADCE為矩形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

明德小學為了美化校園,準備在一塊長32米,寬20米的長方形場地上修筑兩條寬度相同的道路,余下部分作草坪,現(xiàn)在有一位學生設計了如圖所示的方案,求圖中道路的寬是___________     米時,草坪面積為540平方米。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知下列命題:
①對角線互相平分的四邊形是平行四邊形;②對角線互相垂直平分的四邊形是菱形;
③對角線相等的四邊形是矩形;④對角線相等的梯形是等腰梯形.其中真命題有( ▼ )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,從邊長為(a+3)cm的正方形紙片中剪去一個邊長為3cm的正方形,剩余部分沿虛線又剪拼成一個矩形(不重疊無縫隙),若拼成的矩形一邊長為acm,則另一邊長是(  ▲   )
A.(2 a+3)cmB.(2 a+6)cm
C.(2a+3)cmD.(a+6)cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

(11·貴港)如圖所示,在梯形ABCD中,AB∥CD,E是BC的中點,EF⊥AD
于點F,AD=4,EF=5,則梯形ABCD的面積是
A.40B.30C.20D.10

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)
(1)如果△ABC的面積是S,E是BC的中點,連接AE(如圖1),則△AEC的面積是           ;
(2)在△ABC的外部作△ACD,F(xiàn)是AD的中點,連接CF(如圖2),若四邊形ABCD的面積是S,則四邊形AECF的面積是            ;
(3)若任意四邊形ABCD的面積是S,E、F分別是一組對邊AB、CD的中點,連接AF,CE(如圖3),則四邊形AECF的面積是            ;

圖1             圖2                圖3
拓展與應用
(1)若八邊形ABCDEFGH的面積是100,K、M、N、O、P、Q分別是AB、BC、CD、EF、FG、GH的中點,連接KH、MG、NF、OD、PC、QB、(如圖4),則圖中陰影部分的面積是            ;
(2)四邊形ABCD的面積是100,E、F分別是一組對邊AB、CD上的點,且AE=AB,
CF=CD,連接AF,CE(如圖5),則四邊形AECF的面積是            ;
(3)(如圖6)ABCD的面積是2,AB=a,BC=b,點E從點A出發(fā)沿AB以每秒v個單位長的速度向點B運動,點F從點B出發(fā)沿BC以每秒個單位長的速度向點C運動.E、F分別從點A、B同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動.請問四邊形DEBF的面積的值是否隨著時間t的變化而變化?若不變,請寫出這個值         ,并寫出理由;若變化,說明是怎樣變化的.

圖4                  圖5                     圖6

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(11·永州)(本題滿分10分)探究問題:
⑴方法感悟:
如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉90°得到△ABG,此時AB與AD重合,由旋轉可得:
AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF="45° " ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,   ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.

⑵方法遷移:
如圖②,將沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關系,并證明你的猜想.

⑶問題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足,試猜想當∠B與∠D滿足什么關系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).

查看答案和解析>>

同步練習冊答案