(本小題滿分10分)
(1)如果△ABC的面積是S,E是BC的中點(diǎn),連接AE(如圖1),則△AEC的面積是           ;
(2)在△ABC的外部作△ACD,F(xiàn)是AD的中點(diǎn),連接CF(如圖2),若四邊形ABCD的面積是S,則四邊形AECF的面積是            
(3)若任意四邊形ABCD的面積是S,E、F分別是一組對(duì)邊AB、CD的中點(diǎn),連接AF,CE(如圖3),則四邊形AECF的面積是            ;

圖1             圖2                圖3
拓展與應(yīng)用
(1)若八邊形ABCDEFGH的面積是100,K、M、N、O、P、Q分別是AB、BC、CD、EF、FG、GH的中點(diǎn),連接KH、MG、NF、OD、PC、QB、(如圖4),則圖中陰影部分的面積是            ;
(2)四邊形ABCD的面積是100,E、F分別是一組對(duì)邊AB、CD上的點(diǎn),且AE=AB,
CF=CD,連接AF,CE(如圖5),則四邊形AECF的面積是            
(3)(如圖6)ABCD的面積是2,AB=a,BC=b,點(diǎn)E從點(diǎn)A出發(fā)沿AB以每秒v個(gè)單位長(zhǎng)的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)F從點(diǎn)B出發(fā)沿BC以每秒個(gè)單位長(zhǎng)的速度向點(diǎn)C運(yùn)動(dòng).E、F分別從點(diǎn)A、B同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).請(qǐng)問四邊形DEBF的面積的值是否隨著時(shí)間t的變化而變化?若不變,請(qǐng)寫出這個(gè)值         ,并寫出理由;若變化,說明是怎樣變化的.

圖4                  圖5                     圖6
(1)  (2)    (3)(1分+1分+1分)
拓展應(yīng)用(1)50 (2)(1分+1分)
(3)四邊形DEBF的面積的值不隨時(shí)間t的變化而變化;1;(1分+1分)
證明:∵AE=vt,AB=a∴,∵BF=,BC="b" ∴8分
∵△AED與△ABD同底,∴,∵△DBF與△DBC同底,∴
=,∵=,∴=,-----------------------9分
-----------------------------10分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(9分)如圖所示,在邊長(zhǎng)為1的正方形ABCD中,一直角三角尺PQR的直角頂點(diǎn)P在對(duì)角線AC上移動(dòng),直角邊PQ經(jīng)過點(diǎn)D,另一直角邊與射線BC交于點(diǎn)E.
⑴試判斷PE與PD的大小關(guān)系,并證明你的結(jié)論;
⑵連接PB,試證明:△PBE為等腰三角形;
⑶設(shè)AP=x,△PBE的面積為y,
①求出y關(guān)于x 函數(shù)關(guān)系式;
②當(dāng)點(diǎn)P落在AC的何處時(shí),△PBE的面積最大,此時(shí)最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,平行四邊形ABCD中,AD=5cm,AB⊥BD,點(diǎn)O是兩條對(duì)角
線的交點(diǎn),OD=2,則AB=     ▲    cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,觀察圖中菱形的個(gè)數(shù):圖1中有1個(gè)菱形,圖2中有5個(gè)菱形,圖3中有14個(gè)菱形,圖4中有30個(gè)菱形……,則第6個(gè)圖中菱形的個(gè)數(shù)是          個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(8分).如圖,四邊形ABCD的對(duì)角線AC、DB相交于點(diǎn)O,現(xiàn)給出如下三個(gè)條件:.

(1)請(qǐng)你再增加一個(gè)條件:________,使得四邊形ABCD為矩形(不添加其它字母和輔助線,只填一個(gè)即可,不必證明);
(2)請(qǐng)你從中選擇兩個(gè)條件________(用序號(hào)表示,只填一種情況),使得,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分8分)如圖,O是菱形ABCD對(duì)角線的交點(diǎn),作DE∥AC,CE∥BD,DE、CE交于點(diǎn)E,四邊形OCED是矩形嗎?證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•雅安)如圖,在?ABCD中,E,F(xiàn)分別是BC,AD中點(diǎn).
(1)求證:△ABE≌△CDF;
(2)當(dāng)BC=2AB=4,且△ABE的面積為,求證:四邊形AECF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,點(diǎn)E是AB的中點(diǎn),∠BCD=20°,則∠ACE=(   )
A.20°B.30°C.45°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分8分)已知矩形ABCD的對(duì)角線相交于點(diǎn)O,M 、N分別是OD、OC上異于O、C、D的點(diǎn)。
(1)請(qǐng)你在下列條件①DM=CN,②OM=ON,③MN是△OCD的中位線,④MN∥AB中任選一個(gè)添加條件(或添加一個(gè)你認(rèn)為更滿意的其他條件),使四邊形ABNM為等腰梯形,你添加的條件是               。
(2)添加條件后,請(qǐng)證明四邊形ABNM是等腰梯形。

查看答案和解析>>

同步練習(xí)冊(cè)答案