【題目】有一個(gè)邊長(zhǎng)為m+3的正方形,先將這個(gè)正方形兩鄰邊長(zhǎng)分別增加1和減少1,得到的長(zhǎng)方形的面積為S1.

1)試探究該正方形的面積SS1的差是否是一個(gè)常數(shù),如果是,求出這個(gè)常數(shù);如果不是,說(shuō)明理由;

2)再將這個(gè)正方形兩鄰邊長(zhǎng)分別增加4和減少2,得到的長(zhǎng)方形的面積為S2.

試比較S1,S2的大;

當(dāng)m為正整數(shù)時(shí),若某個(gè)圖形的面積介于S1,S2之間(不包括S1S2)且面積為整數(shù),這樣的整數(shù)值有且只有16個(gè),求m的值.

【答案】1)解:SS1的差是是一個(gè)常數(shù)SS1的差是1;2)①當(dāng)-2m+1﹥0,即-1﹤m﹤時(shí),;當(dāng)-2m+10,即m時(shí),;當(dāng)-2m+1= 0,即m =時(shí),= ;m= 9

【解析】

1)根據(jù)完全平方公式和多項(xiàng)式乘以多項(xiàng)式,計(jì)算即可得到答案.

2)①先計(jì)算S1,S2,則有,再分情況討論,即可得到答案.

根據(jù)題意列不等式1617,即可得到答案.

1)解:SS1的差是是一個(gè)常數(shù),

,

,∴SS1的差是1.

2

,∴當(dāng)-2m+1﹥0,即-1﹤m﹤時(shí),;

當(dāng)-2m+10,即m時(shí),;當(dāng)-2m+1= 0,即m =時(shí),= ;

由①得,S1S2-2m+1,∴,∵m為正整數(shù),∴,∵一個(gè)圖形的面積介于S1,S2之間(不包括S1,S2)且面積為整數(shù),整數(shù)值有且只有16個(gè),∴1617,∴m9,∵m為正整數(shù),∴m= 9

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花圃銷(xiāo)售一批名貴花卉,平均每天可售出20盆,每盆盈利40元,為了增加盈利并盡快減少庫(kù)存,花圃決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每盆花卉每降1元,花圃平均每天可多售出2盆.

1)若花圃平均每天要盈利1200元,每盆花卉應(yīng)降價(jià)多少元?

2)每盆花卉降低多少元時(shí),花圃平均每天盈利最多,是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等邊ABC中,

1如圖1,若D為線段BC中點(diǎn),線段AD關(guān)于直線AB的對(duì)稱(chēng)線段為線段AE,連接DE,求∠BDE的度數(shù);

2若點(diǎn)D為線段BC上一動(dòng)點(diǎn)(不與B,C重合),連接AD并將線段AD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°得到線段DE,連接BE.

①根據(jù)題意在圖2中補(bǔ)全圖形;

②小玉通過(guò)觀察、驗(yàn)證,提出猜測(cè):在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,恒有CD=BE.請(qǐng)幫助小玉證明CD=BE.

1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在,,以為圓心,任意長(zhǎng)為半徑畫(huà)弧,分別交于點(diǎn),,再分別以,為圓心,大于長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn),作弧線,交于點(diǎn).已知,則的長(zhǎng)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,,過(guò)的垂線,交的延長(zhǎng)線于,若,則的度數(shù)為( 。

A.45°B.30°C.22.5°D.15°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,C分別在x軸,y軸上,四邊形ABCO為矩形,AB=16,AC=20,點(diǎn)D與點(diǎn)A關(guān)于y軸對(duì)稱(chēng),點(diǎn)EF分別是線段AD、AC上的動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)A、D重合),且∠CEF=ACB.

1)直接寫(xiě)出BC的長(zhǎng)是   ,點(diǎn)D的坐標(biāo)是   

2)證明:AEFDCE相似;

3)當(dāng)EFC為等腰三角形時(shí),求點(diǎn)E的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】端午節(jié)三天假期的某一天,小明全家上午8時(shí)自駕小汽車(chē)從家里出發(fā),到某著名旅游景點(diǎn)游玩.該小汽車(chē)離家的距離S(千米)與時(shí)間t(小時(shí))的關(guān)系如圖所示.

1)在這個(gè)過(guò)程中,自變量是   ,因變量是   

2)景點(diǎn)離小明家多遠(yuǎn)?

3)小明一家在景點(diǎn)游玩的時(shí)間是多少小時(shí)?

4)小明到家的時(shí)間是幾點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k0)的圖象經(jīng)過(guò)點(diǎn)(1,0)和(0,2).

(1)當(dāng)﹣2x3時(shí),求y的取值范圍;

(2)已知點(diǎn)P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】浠水縣商場(chǎng)某柜臺(tái)銷(xiāo)售每臺(tái)進(jìn)價(jià)分別為160元、120元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷(xiāo)售情況:

銷(xiāo)售時(shí)段

銷(xiāo)售數(shù)量

銷(xiāo)售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

4臺(tái)

1200

第二周

5臺(tái)

6臺(tái)

1900

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷(xiāo)售收入﹣進(jìn)貨成本)

(1)求A、B兩種型號(hào)的電風(fēng)扇的銷(xiāo)售單價(jià);

(2)若商場(chǎng)準(zhǔn)備用不多于7500元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共50臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?

(3)在(2)的條件下,商場(chǎng)銷(xiāo)售完這50臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)超過(guò)1850元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案