【題目】如圖(1)所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P沿折線BE-ED-DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,它們運(yùn)動(dòng)的速度都是1cm/秒.設(shè)P、Q同發(fā)t秒時(shí),△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖(2)(曲線OM為拋物線的一部分),則下列結(jié)論:
①AD=BE=5;
②cos∠ABE=;
③當(dāng)0<t≤5時(shí),y=t2;
④當(dāng)t=秒時(shí),△ABE∽△QBP;
其中正確的結(jié)論是 (填序號(hào)).
【答案】①③④.
【解析】
試題解析:根據(jù)圖(2)可得,當(dāng)點(diǎn)P到達(dá)點(diǎn)E時(shí)點(diǎn)Q到達(dá)點(diǎn)C,
∵點(diǎn)P、Q的運(yùn)動(dòng)的速度都是1cm/秒,
∴BC=BE=5,
∴AD=BE=5,故①小題正確;
又∵從M到N的變化是2,
∴ED=2,
∴AE=AD-ED=5-2=3,
在Rt△ABE中,AB==4,
∴cos∠ABE=,故②小題錯(cuò)誤;
過點(diǎn)P作PF⊥BC于點(diǎn)F,
∵AD∥BC,
∴∠AEB=∠PBF,
∴sin∠PBF=sin∠AEB=,
∴PF=PBsin∠PBF=,
∴當(dāng)0<t≤5時(shí),y=BQPF=tt=t2,故③小題正確;
當(dāng)t=秒時(shí),點(diǎn)P在CD上,此時(shí),PD=-BE-ED=-5-2=,
PQ=CD-PD=4-=,
∵,,
∴,
又∵∠A=∠Q=90°,
∴△ABE∽△QBP,故④小題正確.
綜上所述,正確的有①③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列性質(zhì)中,矩形具有但平行四邊形不一定具有的是( )
A. 對(duì)邊相等 B. 對(duì)角相等 C. 對(duì)角線相等 D. 對(duì)邊平行
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,DE∥AC,AE∥BD.
(1)、求證:四邊形AODE是矩形;(2)、若AB=6,∠BCD=120°,求四邊形AODE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰Rt△AOB的斜邊OB在x軸上,直線y=3x-4經(jīng)過等腰Rt△AOB的直角頂點(diǎn)A,交y軸于C點(diǎn),雙曲線y=也經(jīng)過A點(diǎn).
(1)求點(diǎn)A的坐標(biāo)和k的值;
(2)若點(diǎn)P為x軸上一動(dòng)點(diǎn).在雙曲線上是否存在一點(diǎn)Q,使得△PAQ是以點(diǎn)A為直角頂點(diǎn)的等腰三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)機(jī)廠4月份生產(chǎn)零件50萬個(gè),第二季度共生產(chǎn)零件182萬個(gè).設(shè)該廠5,6月份平均每月的增長率為x,那么x滿足的方程是( )
A. 50(1+x)2=182; B. 50+50(1+x)+50(1+x)2=182
C. 50(1+2x)=182; D. 50+50(1+x)+50(1+2x)=182
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com