【題目】下列性質(zhì)中,矩形具有但平行四邊形不一定具有的是( )
A. 對邊相等 B. 對角相等 C. 對角線相等 D. 對邊平行
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
我們知道|x|=,現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代數(shù)式,如化簡代數(shù)式|x+1|+|x-2|時,可令x+1=0和x-2=0,分別求得x=-1,x=2(稱-1,2分別為|x+1|與|x-2|的零點值),在實數(shù)范圍內(nèi),零點值x=-1和x=2可將全體實數(shù)分成不重復(fù)且不遺漏的如下3種情況:
(1)當(dāng)x<-1時,原式=-(x+1)-(x-2)=-2x+1;
(2)當(dāng)-1≤x<2時,原式=x+1-(x-2)=3;
(3)當(dāng)x≥2時,原式=x+1+x-2=2x-1.綜上所述,原式=
學(xué)以致用:
(Ⅰ)分別求出|x+3|和|x-1|的零點值;
(Ⅱ)化簡代數(shù)式|x+3|+|x-1|;
拓展應(yīng)用:
(Ⅲ)求函數(shù)y=|x+3|+|x-1|(-3≤x≤3)的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線AB, CD相交于點O,OF平分∠AOC,EO⊥CD于點O, 且∠DOF=160°,求∠BOE的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣x+k=0的一個根是2,則k的值是( 。
A. ﹣2 B. 2 C. 1 D. ﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如下圖, AB∥CD,點E,F分別為AB,CD上一點.
(1) 在AB,CD之間有一點M(點M不在線段EF上),連接ME,MF,試探究∠AEM,∠EMF,∠MFC之間有怎樣的數(shù)量關(guān)系. 請補全圖形,并在圖形下面寫出相應(yīng)的數(shù)量關(guān)系,選其中一個進行證明.
(2)如下圖,在AB,CD之間有兩點M,N,連接ME,MN,NF,請選擇一個圖形寫出∠AEM,∠EMN,∠MNF,∠NFC 存在的數(shù)量關(guān)系(不需證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,順次連接矩形ABCD四邊的中點得到四邊形A1B1C1D1,然后順次連接四邊形A1B1C1D1的中點得到四邊形A2B2C2D2,再順次連接四邊形A2B2C2D2四邊的中點得到四邊形A3B3C3D3,…,已知AB=6, BC=8,按此方法得到的四邊形A5B5C5D5的周長為(______).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)(a>0)圖象的頂點為D,其圖象與x軸的交點A、B的橫坐標(biāo)分別為﹣1和3,則下列結(jié)論正確的是( )
A. 2a﹣b=0
B. a+b+c>0
C. 3a﹣c=0
D. 當(dāng)a=時,△ABD是等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)所示,E為矩形ABCD的邊AD上一點,動點P、Q同時從點B出發(fā),點P沿折線BE-ED-DC運動到點C時停止,點Q沿BC運動到點C時停止,它們運動的速度都是1cm/秒.設(shè)P、Q同發(fā)t秒時,△BPQ的面積為ycm2.已知y與t的函數(shù)關(guān)系圖象如圖(2)(曲線OM為拋物線的一部分),則下列結(jié)論:
①AD=BE=5;
②cos∠ABE=;
③當(dāng)0<t≤5時,y=t2;
④當(dāng)t=秒時,△ABE∽△QBP;
其中正確的結(jié)論是 (填序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com