【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C1,平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫出平移后對(duì)應(yīng)的△A2B2C2;
(2)若將△A1B1C1繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo).
【答案】(1)圖形見解析;(2)P點(diǎn)坐標(biāo)為(,﹣1).
【解析】
(1)分別作出點(diǎn)A、B關(guān)于點(diǎn)C的對(duì)稱點(diǎn),再順次連接可得;由點(diǎn)A的對(duì)稱點(diǎn)A2的位置得出平移方向和距離,據(jù)此作出另外兩個(gè)點(diǎn)的對(duì)應(yīng)點(diǎn),順次連接可得;
(2)連接A1A2、B1B2,交點(diǎn)即為所求.
(1)如圖所示:A1(3,2)、C1(0,2)、B1(0,0);A2(0,-4)、B2(3,﹣2)、C2(3,﹣4).
(2)將△A1B1C1繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,旋轉(zhuǎn)中心的P點(diǎn)坐標(biāo)為(,﹣1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料,回答問題
一艘輪船以20海里/時(shí)的速度由西向東航行,途中接到臺(tái)風(fēng)警報(bào),臺(tái)風(fēng)中心正以40海里/時(shí)的速度由南向北移動(dòng),距臺(tái)風(fēng)中心20 海里的圓形區(qū)域(包括邊界)都屬臺(tái)風(fēng)區(qū),當(dāng)輪船到A處時(shí),測(cè)得臺(tái)風(fēng)中心移到位于點(diǎn)A正南方向B處,且AB=100海里.
(1)若這艘輪船自A處按原速度和方向繼續(xù)航行,在途中會(huì)不會(huì)遇到臺(tái)風(fēng)?若會(huì),試求輪船最初遇到臺(tái)風(fēng)的時(shí)間;若不會(huì),說明理由;
(2)現(xiàn)輪船自A處立即提高船速,向位于北偏東60°方向,相距60海里的D港駛?cè)ィ瑸槭古_(tái)風(fēng)到來之前,到達(dá)D港,問船速至少應(yīng)提高多少(提高的船速取整數(shù), ≈3.6)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF⊥AB于F,CD⊥AB于D,點(diǎn)在AC邊上,且∠1=∠2=.
(1)判斷DG與BC的位置關(guān)系,并加以證明;
(2)若∠AGD=,試求∠DCG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(生活常識(shí))
射到平面鏡上的光線(入射光線)和變向后的光線(反射光線)與平面鏡所夾的角相等。如圖 1,MN 是平面鏡,若入射光線 AO 與水平鏡面夾角為∠1,反射光線 OB 與水平鏡面夾角為∠2,則∠1=∠2 .
(現(xiàn)象解釋)
如圖 2,有兩塊平面鏡 OM,ON,且 OM⊥ON,入射光線 AB 經(jīng)過兩次反射,得到反射光線 CD.求證 AB∥CD.
(嘗試探究)
如圖 3,有兩塊平面鏡 OM,ON,且∠MON =55 ,入射光線 AB 經(jīng)過兩次反射,得到反射光線 CD,光線 AB 與 CD 相交于點(diǎn) E,求∠BEC 的大小.
(深入思考)
如圖 4,有兩塊平面鏡 OM,ON,且∠MON α ,入射光線 AB 經(jīng)過兩次反射,得到反射光線 CD,光線 AB 與 CD 所在的直線相交于點(diǎn) E,∠BED=β , α 與 β 之間滿足的等量關(guān)系是 .(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將△ABC沿著某一方向平移一定的距離得到△MNL,則下列結(jié)論中正確的有( )
①AM∥BN;②AM=BN;③BC=ML;④∠ACB=∠MNL。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)為了進(jìn)一步緩解交通擁堵問題,決定修建一條長(zhǎng)為7千米的公路.如果平均每天的修建費(fèi)y(萬(wàn)元)與修建天數(shù)x(天)在30≤x≤12 0之間時(shí)具有一次函數(shù)的關(guān)系,如下表所示.
x | 50 | 60 | 90 | 120 |
y | 40 | 38 | 32 | 26 |
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)后來在修建的過程中計(jì)劃發(fā)生改變,政府決定多修3千米,因此在沒有增減建設(shè)力量的情況下,修完這條路比計(jì)劃晚了15天,求原計(jì)劃每天的修建費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+2的圖象與x軸交于點(diǎn)A(﹣1,0)、B(4,0),與y軸交于點(diǎn)C.
(1)a=;b=;
(2)點(diǎn)P為該函數(shù)在第一象限內(nèi)的圖象上的一點(diǎn),過點(diǎn)P作PQ⊥BC于點(diǎn)Q,連接PC.
①求線段PQ的最大值;
②若以P、C、Q為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=9,BC=12,在Rt△DEF中,∠DFE=90°,EF=6,DF=8,E、F兩點(diǎn)在BC邊上,DE、DF兩邊分別與AB邊交于點(diǎn)G、H.固定△ABC不動(dòng),△DEF從點(diǎn)F與點(diǎn)B重合的位置出發(fā),沿BC邊以每秒1個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng);同時(shí)點(diǎn)P從點(diǎn)F出發(fā),在折線FD﹣DE上以每秒2個(gè)單位的速度向點(diǎn)E運(yùn)動(dòng).當(dāng)點(diǎn)E到達(dá)點(diǎn)C時(shí),△DEF和點(diǎn)P同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=2時(shí),PH=cm,DG=cm;
(2)當(dāng)t為何值時(shí),△PDG為等腰三角形?請(qǐng)說明理由;
(3)當(dāng)t為何值時(shí),點(diǎn)P與點(diǎn)G重合?寫出計(jì)算過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①、圖②是8×5的正方形網(wǎng)格,線段AB、BC的端點(diǎn)均在格點(diǎn)上.按要求在圖①、圖②中以AB、BC為鄰邊各畫一個(gè)四邊形ABCD,使點(diǎn)D在格點(diǎn)上.要求所畫兩個(gè)四邊形不全等,且同時(shí)滿足四邊形ABCD是軸對(duì)稱圖形,點(diǎn)D到∠ABC兩邊的距離相等.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com