【題目】如圖,EF⊥AB于F,CD⊥AB于D,點在AC邊上,且∠1=∠2=.
(1)判斷DG與BC的位置關(guān)系,并加以證明;
(2)若∠AGD=,試求∠DCG的度數(shù).
【答案】(1)DG//BC,理由見解析;(2)∠DCG=15°.
【解析】
(1)平行,先由已知條件證明EF∥CD,所以∠2=∠DCE,又因為∠1=∠2,所以∠1=∠DCE,即可證明DG∥BC;
(2) 因為DG∥BC,根據(jù)平行線的性質(zhì)得出∠AGD=∠ACB=65°,即可求出答案.
證明:(1)∵EF⊥AB于F,CD⊥AB于D,
∴∠BFE=∠BDC=90°,
∴EF∥CD;
∴∠2=∠DCE,
∵∠1=∠2,
∴∠1=∠DCE,
∴DG∥BC,
(2)解:由(1)得:DG∥BC,
∴∠AGD=∠ACB=65°,
∵EF∥CD,∠2=50°,
∴∠DCB=∠2=50°,
∴∠DCG=65°-50°=15°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點C逆時針旋轉(zhuǎn)得到△A′B′C,M是BC的中點,P是A′B′的中點,連接PM,若BC=2,∠BAC=30°,則線段PM的最大值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC是邊長3cm的等邊三角形,動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當點P到達點B時,P、Q兩點停止運動.設(shè)點P的運動時間為t(s),解答問題:當t為何值時,△PBQ是直角三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“漢十”高速鐵路襄陽段正在建設(shè)中,甲、乙兩個工程隊計劃參與一項工程建設(shè),甲隊單獨施工30天完成該項工程的 ,這時乙隊加入,兩隊還需同時施工15天,才能完成該項工程.
(1)若乙隊單獨施工,需要多少天才能完成該項工程?
(2)若甲隊參與該項工程施工的時間不超過36天,則乙隊至少施工多少天才能完成該項工程?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示.現(xiàn)將△ABC平移,使點A變換為點D,點E、F分別是B、C的對應(yīng)點.
(1)請畫出平移后的△DEF.
(2)若連接AD、CF,則這兩條線段之間的關(guān)系是 .
(3)利用網(wǎng)格點畫出△ABC的BC邊上的高AM(點M為垂足).
(4)滿足三角形ABP的面積等于三角形ACB的面積的格點P有 個(不和C重合).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D為∠BAC邊AC上一點,點O為邊AB上一點,AD=DO.以O(shè)為圓心,OD長為半徑作半圓,交AC于另一點E,交AB于點F、G,連接EF.若∠BAC=22°,則∠EFG=°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C1,平移△ABC,若點A的對應(yīng)點A2的坐標為(0,﹣4),畫出平移后對應(yīng)的△A2B2C2;
(2)若將△A1B1C1繞某一點旋轉(zhuǎn)可以得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知是腰長為1的等腰三角形,以的斜邊為直角邊,畫第二個等腰三角形,再以的斜邊為直角邊,畫第三個等腰三角形,…,以此類推,則第2019個等腰三角形的斜邊長是___________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com