【題目】如圖,在平面直角坐標(biāo)系 xOy 中,△ABC 的三個(gè)頂點(diǎn)的坐標(biāo)分別是 A(2,3),B(1,0),C(1,2).
(1)在圖中畫出△ABC 關(guān)于 y 軸對(duì)稱的
(2)直接寫出 三點(diǎn)的坐標(biāo):
( ), ( ), ( );
(3)如果要使以 B、C、D 為頂點(diǎn)的三角形與△ABC 全等,直接寫出所有符合條件的點(diǎn) D 坐標(biāo).
【答案】(1)見(jiàn)解析;(2) (-2,3), (-1,0), (-1,2);(3)(0,3),(0,-1),(2,-1).
【解析】
(1)利用軸對(duì)稱變換,即可作出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;
(2)由(1)中的直角坐標(biāo)系可直接得出 三點(diǎn)的坐標(biāo);
(3)依據(jù)以B、C、D為頂點(diǎn)的三角形與△ABC全等,可知兩個(gè)三角形有公共邊BC,運(yùn)用對(duì)稱性即可得出所有符合條件的點(diǎn)D坐標(biāo).
(1)如圖所示,△A1B1C1即為所求;
(2)由(1)中直角坐標(biāo)系可得
(-2,3), (-1,0), (-1,2);
(3)當(dāng)△BCD與△BCA關(guān)于BC對(duì)稱時(shí),點(diǎn)D坐標(biāo)為(0,3),
當(dāng)△BCA與△CBD關(guān)于BC的中點(diǎn)對(duì)稱時(shí),點(diǎn)D坐標(biāo)為(0,-1),
△BCA與△CBD關(guān)于BC的中垂線對(duì)稱時(shí),點(diǎn)D坐標(biāo)為當(dāng)(2,-1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“拋硬幣”游戲中,拋次出現(xiàn)次正面;拋次出現(xiàn)次正面;拋次出現(xiàn)次正面;拋次出現(xiàn)次正面.試問(wèn):
四次拋硬幣,出現(xiàn)正面的頻率各是________、________、______、_______.
用一句話概括出游戲中的規(guī)律________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在四邊形ABCD中,AB=CD,BC=AD,E、F是對(duì)角線AC上兩點(diǎn),且AE=CF.求證:BE=DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知是等腰直角三角形,,點(diǎn)D是BC的中點(diǎn)作正方形DEFG,使點(diǎn)A、C分別在DG和DE上,連接AE,BG.
試猜想線段BG和AE的數(shù)量關(guān)系是______;
將正方形DEFG繞點(diǎn)D逆時(shí)針?lè)较蛐D(zhuǎn),
判斷中的結(jié)論是否仍然成立?請(qǐng)利用圖2證明你的結(jié)論;
若,當(dāng)AE取最大值時(shí),求AF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D為△ABC內(nèi)一點(diǎn),CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,則BD的長(zhǎng)為( 。
A. 1 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE =∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=________度;
(2)設(shè),.
①如圖2,當(dāng)點(diǎn)在線段BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
②當(dāng)點(diǎn)在直線BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自定義:在一個(gè)圖形上畫一條直線,若這條直線既平分該圖形的面積,又平分該圖形的周長(zhǎng),我們稱這條直線為這個(gè)圖形的“等分積周線”.
(1)如圖1,已知△ABC,AC≠BC,過(guò)點(diǎn)C能否畫出△ABC的一條“等分積周線”?若能,說(shuō)出確定的方法,若不能,請(qǐng)說(shuō)明理由.
(2)如圖2,在四邊形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足為F,交BC于點(diǎn)E,已知AB=3,BC=8,CD=5.求證:直線EF為四邊形ABCD的“等分積周線”;
(3)如圖3,在△ABC中,AB=BC=6,AC=8,請(qǐng)你畫出△ABC的一條“等分積周線”EF(要求:直線EF不過(guò)△ABC的頂點(diǎn),交邊AC于點(diǎn)F,交邊BC于點(diǎn)E),并說(shuō)明EF為“等分積周線”的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,數(shù)學(xué)小組發(fā)現(xiàn)米高旗桿的影子落在了包含一圓弧型小橋在內(nèi)的路上,于是他們開(kāi)展了測(cè)算小橋所在圓的半徑的活動(dòng).小剛身高米,測(cè)得其影長(zhǎng)為米,同時(shí)測(cè)得的長(zhǎng)為米,的長(zhǎng)為米,測(cè)得小橋拱高(弧的中點(diǎn)到弦的距離,即的長(zhǎng))為米,則小橋所在圓的半徑為( )
A. B. 5 C. D. 6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com