【題目】發(fā)現(xiàn):已知△ABC中,AE是△ABC的角平分線,∠B=72°,∠C=36°
(1)如圖1,若AD⊥BC于點(diǎn)D,求∠DAE的度數(shù);
(2)如圖2,若P為AE上一個(gè)動(dòng)點(diǎn)(P不與A、E重合),且PF⊥BC于點(diǎn)F時(shí),∠EPF= °.
(3)探究:如圖2△ABC中,已知∠B,∠C均為一般銳角,∠B>∠C,AE是△ABC的角平分線,若P為線段AE上一個(gè)動(dòng)點(diǎn)(P不與E重合),且PF⊥BC于點(diǎn)F時(shí),請(qǐng)寫出∠EPF與∠B,∠C的關(guān)系,并說明理由.
【答案】(1)18°(2)18°(3)∠EPF=
【解析】
(1)利用三角形內(nèi)角和定理和角平分線定義求出∠BAE=36°,然后根據(jù)直角三角形的性質(zhì)求出∠BAD=18°,問題得解;
(2)首先求出∠AEB=72°,然后根據(jù)直角三角形的性質(zhì)求解即可;
(3)如圖2,同(1)(2)步驟可得結(jié)論.
(1)∠BAC=180°-36°-72°=72°,
∵AE是△ABC的角平分線,
∴∠BAE=36°,
∵AD⊥BC,
∴∠BAD=90°-72°=18°,
∴∠DAE=∠BAE -∠BAD =36°-18°=18°;
(2)∵∠B=72°,∠BAE=36°,
∴∠AEB=180°-72°-36°=72°,
∵PF⊥BC,
∴在三角形EPF中,∠EPF=90°-∠AEB=90°-72°=18°;
(3)∠EPF=,
理由:∵AE為角平分線,
∴∠BAE=(180°-∠B-∠C),
∴∠AEB=180°-∠B-∠BAE=180°-∠B-(180°-∠B-∠C)=90°-∠B +∠C,
在三角形EPF中,∠EPF=90°-∠AEB=90°-(90°-∠B +∠C)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,∠BAD=∠BCD=900,連結(jié)AC,若AC=10,則四邊形ABCD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,ABC的頂點(diǎn)都在格點(diǎn)上,在平面直角坐標(biāo)系。
⑴寫出點(diǎn)的坐標(biāo):點(diǎn)A ,點(diǎn)B ,點(diǎn)C .
⑵將ABC向右平移7個(gè)單位,再向下平移3個(gè)單位,得到A1B1C1,試在圖上畫出A1B1C1的圖形;
⑶求ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位招聘員工,采取筆試與面試相結(jié)合的方式,兩項(xiàng)成績(jī)的原始分均為100分,前6名選手的得分如下:
根據(jù)規(guī)定,筆試成績(jī)和面試成績(jī)按一定的百分比折合成綜合成績(jī)(綜合成績(jī)的滿分仍為100分)
(1)這6名選手筆試成績(jī)的平均數(shù)是_____分,中位數(shù)是_____分,眾數(shù)是______分.
(2)現(xiàn)已知1號(hào)選手的綜合成績(jī)?yōu)?/span>88分,求筆試成績(jī)和面試成績(jī)的百分比各為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC是⊙O的直徑,點(diǎn)B在圓周上(不與A、C重合),點(diǎn)D在AC的延長(zhǎng)線上,連接BD交⊙O于點(diǎn)E,若∠AOB=3∠ADB,則( )
A. DE=EB B. DE=EB C. DE=DO D. DE=OB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一枚質(zhì)地均勻的正四面體骰子,它有四個(gè)面并分別標(biāo)有數(shù)字,,,,如圖,正方形頂點(diǎn)處各有一個(gè)圈.跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子著地一面上的數(shù)字是幾,就沿正方形的邊順時(shí)針方向連續(xù)跳幾個(gè)邊長(zhǎng).如:若從圖起跳,第一次擲得,就順時(shí)針連續(xù)跳個(gè)邊長(zhǎng),落到圈;若第二次擲得,就從開始順時(shí)針連續(xù)跳個(gè)邊長(zhǎng),落到圈;設(shè)游戲者從圈起跳.
()嘉嘉隨機(jī)擲一次骰子,求落回到圈的概率.
()淇淇隨機(jī)擲兩次骰子,用列表法求最后落回到圈的概率,并指出她與嘉嘉落回到圈的可能性一樣嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在解不等式|x+1|>2時(shí),我們可以采用下面的解答方法:
①當(dāng)x+1≥0時(shí),|x+1|=x+1.
∴由原不等式得x+1>2.∴可得不等式組
∴解得不等式組的解集為x>1.
②當(dāng)x+1<0時(shí),|x+1|=﹣(x+1).
∴由原不等式得﹣(x+1)>2.∴可得不等式組
∴解得不等式組的解集為x<﹣3.
綜上所述,原不等式的解集為x>1或x<﹣3.
請(qǐng)你仿照上述方法,嘗試解不等式|x﹣2|≤1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩隊(duì)進(jìn)行乒乓球團(tuán)體賽,比賽規(guī)則規(guī)定:兩隊(duì)之間進(jìn)行3局比賽,3局比賽必須全部打完,只要贏滿2局的隊(duì)為獲勝隊(duì),假設(shè)甲、乙兩隊(duì)之間每局比賽輸贏的機(jī)會(huì)相同.
()甲3局全勝的概率是__________;
()如果甲隊(duì)已經(jīng)贏得了第1局比賽,那么甲隊(duì)最終獲勝的概率是多少?(用“樹狀圖”或“列表”法寫出解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲,乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地,兩人之間的距離 (米)與時(shí)間 (分鐘)之間的函數(shù)關(guān)系如圖所示,根據(jù)圖象信息回答下列問題:
(1)圖書館與學(xué)校之間的距離為 米;
(2)當(dāng) 分鐘時(shí),甲乙兩人相遇;
(3)乙的速度為 米/分鐘;
(4)點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com