【題目】如圖,P為正方形ABCD的邊BC上一動點(P與B、C不重合),連接AP,過點B作BQ⊥AP交CD于點Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′交BA的延長線于點M.
(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當AB=3,BP=2PC,求QM的長;
(3)當BP=m,PC=n時,求AM的長.
【答案】(1)AP=BQ,理由參見解析;(2);(3).
【解析】試題分析:(1)要證AP=BQ,只需證△PBA≌△QCB即可;
(2)過點Q作QH⊥AB于H,如圖.易得QH=BC=AB=3,BP=2,PC=1,然后運用勾股定理可求得AP(即BQ)=,BH=2.易得DC∥AB,從而有∠CQB=∠QBA.由折疊可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.設(shè)QM=x,則有MB=x,MH=x﹣2.在Rt△MHQ中運用勾股定理就可解決問題;
(3)過點Q作QH⊥AB于H,如圖,同(2)的方法求出QM的長,就可得到AM的長.
解:(1)AP=BQ.
理由:∵四邊形ABCD是正方形,
∴AB=BC,∠ABC=∠C=90°,
∴∠ABQ+∠CBQ=90°.
∵BQ⊥AP,∴∠PAB+∠QBA=90°,
∴∠PAB=∠CBQ.
在△PBA和△QCB中,
,
∴△PBA≌△QCB,
∴AP=BQ;
(2)過點Q作QH⊥AB于H,如圖.
∵四邊形ABCD是正方形,
∴QH=BC=AB=3.
∵BP=2PC,
∴BP=2,PC=1,
∴BQ=AP===,
∴BH===2.
∵四邊形ABCD是正方形,
∴DC∥AB,
∴∠CQB=∠QBA.
由折疊可得∠C′QB=∠CQB,
∴∠QBA=∠C′QB,
∴MQ=MB.
設(shè)QM=x,則有MB=x,MH=x﹣2.
在Rt△MHQ中,
根據(jù)勾股定理可得x2=(x﹣2)2+32,
解得x=.
∴QM的長為;
(3)過點Q作QH⊥AB于H,如圖.
∵四邊形ABCD是正方形,BP=m,PC=n,
∴QH=BC=AB=m+n.
∴BQ2=AP2=AB2+PB2,
∴BH2=BQ2﹣QH2=AB2+PB2﹣AB2=PB2,
∴BH=PB=m.
設(shè)QM=x,則有MB=QM=x,MH=x﹣m.
在Rt△MHQ中,
根據(jù)勾股定理可得x2=(x﹣m)2+(m+n)2,
解得x=m+n+,
∴AM=MB﹣AB=m+n+﹣m﹣n=.
∴AM的長為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年某市用于資助貧困學(xué)生的助學(xué)金總額是9680000元,將9680000用科學(xué)記數(shù)法表示為( )
A. 96.8×105 B. 9.68×106 C. 9.68×107 D. 0.968×108
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,△OBC的頂點分別為O(0,0),B(3,﹣1)、C(2,1).
(1)以點O(0,0)為位似中心,按比例尺2:1在位似中心的異側(cè)將△OBC放大為△OB′C′,放大后點B、C兩點的對應(yīng)點分別為B′、C′,畫出△OB′C′,并寫出點B′、C′的坐標:B′( , ),C′( , );
(2)在(1)中,若點M(x,y)為線段BC上任一點,寫出變化后點M的對應(yīng)點M′的坐標( , ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中錯誤的是( )
A. 擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后6點朝上是必然事件
B. 了解一批電視機的使用壽命,適合用抽樣調(diào)查的方式
C. 若a為實數(shù),則|a|<0是不可能事件
D. 甲、乙兩人各進行10次射擊,兩人射擊成績的方差分別為S甲2=2,S乙2=4,則甲的射擊成績更穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我縣七年級今年有4500名學(xué)生參加本次考試,要想了解這4500名學(xué)生的數(shù)學(xué)成績從中抽取了500名考生的數(shù)學(xué)成績進行統(tǒng)計分析,以下說法正確的是( )
A. 這500名考生是總體的一個樣本 B. 每位考生是個體
C. 500名考生是總體 D. 這種調(diào)查是抽樣調(diào)查
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件屬于必然事件的是( 。
A. 蒙上眼睛射擊正中靶心
B. 買一張彩票一定中獎
C. 打開電視機,電視正在播放新聞聯(lián)播
D. 月球繞著地球轉(zhuǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A(﹣1,0)、B(3,0)兩點,與y軸交于點C(0,﹣3),設(shè)拋物線的頂點為D.
(1)求該拋物線的解析式與頂點D的坐標;
(2)以B、C、D為頂點的三角形是直角三角形嗎?為什么?
(3)探究坐標軸上是否存在點P,使得以P、A、C為頂點的三角形與△BCD相似?若存在,請指出符合條件的點P的位置,并直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com