【題目】某商店準(zhǔn)備進(jìn)一批季節(jié)性小家電,每個進(jìn)價為40元,經(jīng)市場預(yù)測,銷售定價為50元,可售出400個;定價每增加1元,銷售量將減少10個.設(shè)每個定價增加x元.

(1)寫出售出一個可獲得的利潤是多少元(用含x的代數(shù)式表示)?

(2)商店若準(zhǔn)備獲得利潤6000元,并且使進(jìn)貨量較少,則每個定價為多少元?應(yīng)進(jìn)貨多少個?

(3)商店若要獲得最大利潤,則每個應(yīng)定價多少元?獲得的最大利潤是多少?

【答案】(1)x+10元;(2)每個定價為70元,應(yīng)進(jìn)貨200個.(3)每個定價為65元時得最大利潤,可獲得的最大利潤是6250元.

【解析】試題分析:(1)根據(jù)利潤=銷售價-進(jìn)價列關(guān)系式,(2)總利潤=每個的利潤×銷售量,銷售量為400-10x,列方程求解,根據(jù)題意取舍,(3)利用函數(shù)的性質(zhì)求最值.

試題解析:由題意得:(1)50+x-40=x+10(元),

(2)設(shè)每個定價增加x,

列出方程為:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使進(jìn)貨量較少,則每個定價為70,應(yīng)進(jìn)貨200,

(3)設(shè)每個定價增加x,獲得利潤為y,

y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,當(dāng)x=15,y有最大值為6250,所以每個定價為65元時得最大利潤,可獲得的最大利潤是6250.

型】解答
結(jié)束】
24

【題目】猜想與證明:

如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點(diǎn)在一條直線上,CE在邊CD上,連接AF,若MAF的中點(diǎn),連接DM、ME,試猜想DMME的關(guān)系,并證明你的結(jié)論.

拓展與延伸:

(1)若將猜想與證明中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DMME的關(guān)系為   

(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點(diǎn)F在邊CD上,點(diǎn)M仍為AF的中點(diǎn),試證明(1)中的結(jié)論仍然成立.

【答案】猜想:DM=ME,證明見解析;(2)成立,證明見解析.

【解析】

試題分析:延長EMAD于點(diǎn)H,根據(jù)ABCDCEFG為矩形得到AD∥EF,得到△FME△AMH全等,得到HM=EM,根據(jù)Rt△HDE得到HM=DE,則可以得到答案;(1)、延長EMAD于點(diǎn)H,根據(jù)ABCDCEFG為矩形得到AD∥EF,得到△FME△AMH全等,得到HM=EM,根據(jù)Rt△HDE得到HM=DE,則可以得到答案;(2)、連接AE,根據(jù)正方形的性質(zhì)得出∠FCE=45°,∠FCA=45°,根據(jù)RT△ADFAM=MF得出DM=AM=MF,根據(jù)RT△AEFAM=MF得出AM=MF=ME,從而說明DM=ME.

試題解析:如圖1,延長EMAD于點(diǎn)H,四邊形ABCDCEFG是矩形,∴AD∥EF,

∴∠EFM=∠HAM,

∵∠FME=∠AMH,FM=AM

△FME△AMH中,

∴△FME≌△AMHASA

∴HM=EM,

RT△HDE中,HM=DE,

∴DM=HM=ME

∴DM=ME

1)、如圖1,延長EMAD于點(diǎn)H,

四邊形ABCDCEFG是矩形,

∴AD∥EF,

∴∠EFM=∠HAM,

∵∠FME=∠AMH,FM=AM

△FME△AMH中,

∴△FME≌△AMHASA

∴HM=EM,

RT△HDE中,HM=EM

∴DM=HM=ME

∴DM=ME

2)、如圖2,連接AE,

四邊形ABCDECGF是正方形,

∴∠FCE=45°,∠FCA=45°,

∴AEEC在同一條直線上,

RT△ADF中,AM=MF

∴DM=AM=MF

RT△AEF中,AM=MF,

∴AM=MF=ME,

∴DM=ME

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、B、C,已知A(﹣1,0),C(0,3).

(1)求拋物線的解析式;

(2)如圖1,P為線段BC上一點(diǎn),過點(diǎn)Py軸平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時,求點(diǎn)P的坐標(biāo);

(3)如圖2,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),M(m,0)是x軸上一動點(diǎn),N是線段EF上一點(diǎn),若∠MNC=90°,請指出實(shí)數(shù)m的變化范圍,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 兩點(diǎn)的坐標(biāo)分別為,點(diǎn)分別是直線x軸上的動點(diǎn),,點(diǎn)是線段的中點(diǎn),連接軸于點(diǎn);當(dāng)⊿面積取得最小值時,的值是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O的內(nèi)接ABC中,∠CAB90°,AB2AC,過點(diǎn)ABC的垂線m交⊙O于另一點(diǎn)D,垂足為H,點(diǎn)E上異于A,B的一個動點(diǎn),射線BE交直線m于點(diǎn)F,連接AE,連接DEBC于點(diǎn)G

1)求證:FED∽△AEB;

2)若,AC2,連接CE,求AE的長;

3)在點(diǎn)E運(yùn)動過程中,若BGCG,求tanCBF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前,步行已成為人們最喜愛的健身方法之一,通過手機(jī)可以計算行走的步數(shù)與相應(yīng)的能量消耗.對比手機(jī)數(shù)據(jù)發(fā)現(xiàn)小明步行12 000步與小紅步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步數(shù)比小紅多10步,求小紅每消耗1千卡能量需要行走多少步?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解在校初中生閱讀數(shù)學(xué)文化史類書籍的現(xiàn)狀,隨機(jī)抽取了初中部部分學(xué)生進(jìn)行研究調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成以下不完整的的統(tǒng)計圖表,請你根據(jù)圖表中的信息解答下列問題:

類別

人數(shù)

占總?cè)藬?shù)比例

重視

a

0.3

一般

57

0.38

不重視

b

C

說不清楚

9

0.06

1)求表格中a,b,c的值,并補(bǔ)全統(tǒng)計圖;

2)若該校共有初中生2400名,請估計該校不重視閱讀數(shù)學(xué)文化史書籍的初中生人數(shù);

3)若小明和小華去書店,打算從A,B,CD四本數(shù)學(xué)文化史類書籍中隨機(jī)選取一本,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一本書籍的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2009517日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累計確診病例人數(shù)如圖所示.

1)在517日至521日這5天中,日本平均每天新增加甲型H1N1流感確診病例多少人?如果接下來的5天中,繼續(xù)按這個平均數(shù)增加,那么到526日,日本甲型H1N1流感累計確診病例將會達(dá)到多少人?

2)甲型H1N1流感病毒的傳染性極強(qiáng),某地因1人患了甲型H1N1流感沒有及時隔離治療,經(jīng)過兩天傳染后共有9人患了甲型H1N1流感,每天傳染中平均一個人傳染了幾個人?如果按照這個傳染速度,再經(jīng)過5天的傳染后,這個地區(qū)一共將會有多少人患甲型H1N1流感?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了迎接疫情徹底結(jié)束后的購物高峰.某運(yùn)動品牌專賣店準(zhǔn)備購進(jìn)甲、乙兩種運(yùn)動鞋.其中甲、乙兩種運(yùn)動鞋的進(jìn)價和售價如下表

運(yùn)動鞋價格

進(jìn)價(/)

售價(/)

已知元購進(jìn)甲種運(yùn)動鞋的數(shù)量與用元購進(jìn)乙種運(yùn)動鞋的數(shù)量相同.

的值;

要使購進(jìn)的甲、乙兩種運(yùn)動鞋共雙的總利潤(利潤售價進(jìn)價)不少于元,且甲種運(yùn)動鞋的數(shù)量不超過雙,問該專賣店共有幾種進(jìn)貨方案;

的條件下,專賣店準(zhǔn)備對甲種運(yùn)動鞋進(jìn)行優(yōu)惠促銷活動,決定對甲種運(yùn)動鞋每雙優(yōu)惠元出售,乙種運(yùn)動鞋價格不變.那么該專賣店要獲得最大利潤應(yīng)如何進(jìn)貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在邊長為6的正方形ABCD外以CD為底邊作等腰直角CDE,連接BE,交CD于點(diǎn)F,則CF=___________

查看答案和解析>>

同步練習(xí)冊答案