【題目】已知:如圖,在△ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動.
(1)若P、Q分別從A、B同時出發(fā),那么幾秒后△PBQ的面積等于4cm2?
(2)如果P、Q分別從A、B同時出發(fā),那么幾秒后,PQ的長度等于5cm?
(3)在(1)中,△PBQ的面積能否等于7cm2? 請說明理由.
【答案】(1)1s;(2)2s;(3)△POB的面積不能等于7cm2.
【解析】試題分析:
(1)經(jīng)過x秒鐘,△PBQ的面積等于4cm2,根據(jù)點P從A點開始沿AB邊向點B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動,表示出BP和BQ的長可列方程求解;
(2)利用勾股定理列出方程求解即可;
(3)結合(1)列出方程判斷其根的情況即可.
試題解析:(1)設x秒后,△BPQ的面積為4cm2,此時AP=xcm,BP=(5-x)cm,BQ=2xcm,
由BP×BQ=4,得(5-x)×2x=4,
整理得:x2-5x+4=0,
解得:x=1或x=4(舍去).
當x=4時,2x=8>7,說明此時點Q越過點C,不合要求,舍去.
答:1秒后△BPQ的面積為4cm2.
(2)由BP2+BQ2=52,得(5-x)2+(2x)2=52,
整理得x2-2x=0,
解方程得:x=0(舍去),x=2.
所以2秒后PQ的長度等于5cm;
(3)不可能.
設(5-x)×2x=7,整理得x2-5x+7=0,
∵b2-4ac=-3<0,
∴方程沒有實數(shù)根,
所以△BPQ的面積為的面積不可能等于7cm2.
科目:初中數(shù)學 來源: 題型:
【題目】一只不透明的袋子中裝有白、紅、黑三種不同的球,其中白球有3個,紅球有8個,黑球有m個,這些球除顏色外完全相同.若從袋子中任意取一個球,摸到黑球的可能性最小,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于A,B兩點(點A在點B的左側)與y軸交于點C(0,-3),對稱軸是直線x=1,直線BC與拋物線的對稱軸交于點D,點E為y軸上一動點,CE的垂直平分線交拋物線于P,Q兩點(點P在第三象限)
(1)求拋物線的函數(shù)表達式和直線BC的函數(shù)表達式;
(2)當△CDE是直角三角形,且∠CDE=90° 時,求出點P的坐標;
(3)當△PBC的面積為時,求點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】人體中成熟的紅細胞的平均直徑為0.000 007 7 m,用科學記數(shù)法表示為( )
A.7.7×10-5 mB.77×10-6 m
C.77×10-5 mD.7.7×10-6 m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點D(保留作圖痕跡,不要求寫作法);
(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點,過點D作⊙O的切線交BC于點M,則DM的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,則下
列結論:①,②,③,④,⑤ 中正確的是( )
A. ②④⑤ B. ①②④ C. ①③④ D. ①③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com