如圖,已知:∠MAN=60°,AP平分∠MAN,且AP=4,請?zhí)骄浚?BR>(1)如圖<1>,若以AP為直徑作⊙O,分別交AM、AN于B、C,求AB+AC的長;
(2)如圖<2>,若以AP為弦(不是直徑),任作⊙O1分別交AM、AN于B1、C1點,則AB1+AC1的長是否不變?請說明理由;
(3)如圖<3>,若以AP為弦(不是直徑)作⊙O2與AM切于A點,交AN于C2點,則AC2的長是多少?請說明理由。
解:(1)連接PB、PC,
∵AP為ΘO的直徑,
∴∠ABP=∠ACP=90°,
∵AP平分∠MAN,
∴∠BAP=30°,
∴AB=AC=APcos30°=,
∴AB+AC=4;
(2)AB1+AC1的長度不變,
理由:連接PB1、PC1
在△PBB1和△PCC1中,
∵∠B1AP=∠C1AP=30°,
,
∴PB1=PC1,
∵∠ABP=∠C1CP=90°,
∴PB=PC,
∴Rt△PBB1≌RtPCC1,
∴B1B=C1C,
∴AB1+AC1=AB-B1B+AC+C1C=AB+AC=4;
(3)連接AO2并延長交ΘO2于D,連接PD、PC2
∴∠APD=90°,
則∠D+∠PAD=90°,
∵ΘO2與AM切于A點,
∴∠PAD+∠BAP=90° =4,
∵∠D=∠BAP=∠CAP=30°,
∵∠D=∠AC2P,
∴∠AC2P=∠CAP,
∴△APC2為等腰三角形,
∵∠ACP=90°,即PC⊥AC2
∴AC=CC2=,
∴AC2=AC+CC2=
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知:∠MAN=60°,AP平分∠MAN,且AP=4.請?zhí)骄浚?br />精英家教網
(1)如圖<1>,若以AP為直徑作⊙O,分別交AM、AN于B、C,求AB+AC的長;
(2)如圖<2>,若以AP為弦(不是直徑),任作⊙O1分別交AM、AN于B1、C1點,則AB1+AC1的長是否不變?請說明理由;
(3)如圖<3>,若以AP為弦(不是直徑)作⊙O2與AM切于A點,交AN于C2點,則AC2的長是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知:∠MAN=30°,O為邊AN上一點,以O為圓心,2為半徑作⊙O,交AN于D,E兩點,設AD=x,問:當x為何值時,⊙O與AM相切?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知:∠MAN=60°,AP平分∠MAN,且AP=4.請?zhí)骄浚?img src="http://thumb.zyjl.cn/pic5/upload/201311/52868d96ee60d.png" style="vertical-align:middle" />
(1)如圖<1>,若以AP為直徑作⊙O,分別交AM、AN于B、C,求AB+AC的長;
(2)如圖<2>,若以AP為弦(不是直徑),任作⊙O1分別交AM、AN于B1、C1點,則AB1+AC1的長是否不變?請說明理由;
(3)如圖<3>,若以AP為弦(不是直徑)作⊙O2與AM切于A點,交AN于C2點,則AC2的長是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知:∠MAN=30°,O為邊AN上一點,以O為圓心,2為半徑作⊙O,交AN于D,E兩點,設AD=x,問:當x為何值時,⊙O與AM相切?

查看答案和解析>>

同步練習冊答案