如圖,已知:∠MAN=30°,O為邊AN上一點,以O為圓心,2為半徑作⊙O,交AN于D,E兩點,設AD=x,問:當x為何值時,⊙O與AM相切?
分析:過O點作OF⊥AM于F.根據(jù)切線的性質知OF=r=2.然后在直角△AOF中,由“30°角所對的直角邊是斜邊的一半”求得線段AO的長度.則AD=AO-r.
解答:解:過O點作OF⊥AM于F.當OF=r=2時,⊙O與AM相切.
∵∠AFO=90°,∠MAN=30°,
∴AO=2OF=4,
∴x=AD=AO-OD=AO-r=2cm.即當x為2時,⊙O與AM相切.
點評:本題考查了切線的性質.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知:∠MAN=60°,AP平分∠MAN,且AP=4.請?zhí)骄浚?br />精英家教網(wǎng)
(1)如圖<1>,若以AP為直徑作⊙O,分別交AM、AN于B、C,求AB+AC的長;
(2)如圖<2>,若以AP為弦(不是直徑),任作⊙O1分別交AM、AN于B1、C1點,則AB1+AC1的長是否不變?請說明理由;
(3)如圖<3>,若以AP為弦(不是直徑)作⊙O2與AM切于A點,交AN于C2點,則AC2的長是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知:∠MAN=60°,AP平分∠MAN,且AP=4.請?zhí)骄浚?img src="http://thumb.zyjl.cn/pic5/upload/201311/52868d96ee60d.png" style="vertical-align:middle" />
(1)如圖<1>,若以AP為直徑作⊙O,分別交AM、AN于B、C,求AB+AC的長;
(2)如圖<2>,若以AP為弦(不是直徑),任作⊙O1分別交AM、AN于B1、C1點,則AB1+AC1的長是否不變?請說明理由;
(3)如圖<3>,若以AP為弦(不是直徑)作⊙O2與AM切于A點,交AN于C2點,則AC2的長是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知:∠MAN=30°,O為邊AN上一點,以O為圓心,2為半徑作⊙O,交AN于D,E兩點,設AD=x,問:當x為何值時,⊙O與AM相切?

查看答案和解析>>

科目:初中數(shù)學 來源:福建省模擬題 題型:解答題

如圖,已知:∠MAN=60°,AP平分∠MAN,且AP=4,請?zhí)骄浚?BR>(1)如圖<1>,若以AP為直徑作⊙O,分別交AM、AN于B、C,求AB+AC的長;
(2)如圖<2>,若以AP為弦(不是直徑),任作⊙O1分別交AM、AN于B1、C1點,則AB1+AC1的長是否不變?請說明理由;
(3)如圖<3>,若以AP為弦(不是直徑)作⊙O2與AM切于A點,交AN于C2點,則AC2的長是多少?請說明理由。

查看答案和解析>>

同步練習冊答案