【題目】如圖1,某學(xué)校開展“交通安全日”活動.在活動中,交警叔叔向同學(xué)們展示了大貨車盲區(qū)的分布情況,并提醒大家:坐在駕駛室的司機(jī)根本看不到在盲區(qū)中的同學(xué)們,所以一定要遠(yuǎn)離大貨車的盲區(qū),保護(hù)自身安全.小剛所在的學(xué)習(xí)小組為了更好的分析大貨車盲區(qū)的問題,將圖1用平面圖形進(jìn)行表示,并標(biāo)注了測量出的數(shù)據(jù),如圖2.在圖2中大貨車的形狀為矩形,而盲區(qū)1為梯形,盲區(qū)2、盲區(qū)3為直角三角形,盲區(qū)4為正方形.

請你幫助小剛的學(xué)習(xí)小組解決下面的問題:

(1)盲區(qū)1的面積約是多少m2;盲區(qū)2的面積約是多少m2;

≈1.4,≈1.7,sin25°≈0.4,cos25°≈0.9,tan25°≈05,結(jié)果保留整數(shù))

(2)如果以大貨車的中心A點為圓心,覆蓋所有盲區(qū)的半徑最小的圓為大貨車的危險區(qū)域,請在圖2中畫出大貨車的危險區(qū)域.

【答案】(1)盲區(qū)1的面積約是5m2;盲區(qū)2的面積約是4m2;(2)以A為圓心,AC長為半徑所畫的圓為大貨車的危險區(qū)域.如圖所示見解析.

【解析】

(1)作OPCDP.根據(jù)等腰梯形的性質(zhì)求出DPCDOB)=1.解直角△ODP,得出OPDPtan∠D,再利用梯形的面積公式即可求出盲區(qū)1的面積;解直角△BEN,求出BE≈4,那么SBENBEEN≈4m2,即為盲區(qū)2的面積;

(2)利用勾股定理求出ACADAHAG,AMAN,得到AC最大,那么以A為圓心,AC長為半徑所畫的圓為大貨車的危險區(qū)域.

(1)如圖,作OP⊥CD于P.

∵OBCD是等腰梯形,OB=2,CD=4,

∴DP=(CD﹣OB)=1.

在直角△ODP中,∵∠D=60°,

∴OP=DPtan∠D=1×,

∴S梯形OBCD(OB+CD)OP=(2+4)=3≈3×1.7≈5(m2),

即盲區(qū)1的面積約是5m2;

在直角△BEN中,∵∠EBN=25°,EN=2,

∴BE==4,

∴S△BENBEEN≈×4×2=4(m2),

即盲區(qū)2的面積約是4m2

故答案為5,4;

(2)∵AC=AD=

AH=AG=,

AM=AN=,

∴AC=AD>AH=AG>AM=AN,

∴以A為圓心,AC長為半徑所畫的圓為大貨車的危險區(qū)域.

如圖所示.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點 O 是等邊ABC 內(nèi)一點,AOB=110°,BOCa.將BOC 繞點 C 按順時針方向旋轉(zhuǎn) 60°ADC,則ADC≌△BOC,連接 OD

(1)求證:COD 是等邊三角形;

(2)當(dāng)α=120°時,試判斷 AD OC 的位置關(guān)系,并說明理由;

(3)探究:當(dāng) a 為多少度時,AOD 是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,ABC為等腰三角形,DCB延長線上一點,連AD且∠DAC=45°,BD=1,CB=4,則AC長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育用品商場預(yù)測某品牌運動服能夠暢銷,就用32000元購進(jìn)了一批這種運動服,上市后很快脫銷,商場又用68000元購進(jìn)第二批這種運動服,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但每套進(jìn)價多了10元.

1)該商場兩次共購進(jìn)這種運動服多少套?

2)如果這兩批運動服每套的售價相同,且全部售完后總利潤不低于,那么每套售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點坐標(biāo)為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)某工廠計劃在規(guī)定時間內(nèi)生產(chǎn)24000個零件,若每天比原計劃多生產(chǎn)30個零件,則在規(guī)定時間內(nèi)可以多生產(chǎn)300個零件.

1)求原計劃每天生產(chǎn)的零件個數(shù)和規(guī)定的天數(shù).

2)為了提前完成生產(chǎn)任務(wù),工廠在安排原有工人按原計劃正常生產(chǎn)的同時,引進(jìn)5組機(jī)器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機(jī)器人生產(chǎn)流水線每天生產(chǎn)零件的個數(shù)比20個工人原計劃每天生產(chǎn)的零件總數(shù)還多20%,按此測算,恰好提前兩天完成24000個零件的生產(chǎn)任務(wù),求原計劃安排的工人人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級生物興趣小組租兩艘快艇去微山湖生物考察,他們從同一碼頭出發(fā),第一艘快艇沿北偏西70°方向航行50千米,第二艘快艇沿南偏西20°方向航行50千米,如果此時第一艘快艇不動,第二艘快艇向第一艘快艇靠攏,那么第二艘快艇航行的方向和距離分別是( 。

A. 南偏東千米 B. 北偏西,千米

C. 南偏東100千米 D. 北偏西,100千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,丁軒同學(xué)在晚上由路燈AC走向路燈BD,當(dāng)他走到點P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當(dāng)他向前再步行20m到達(dá)Q點時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學(xué)的身高是1.5m,兩個路燈的高度都是9m,則兩路燈之間的距離是(  。

A. 24m B. 25m C. 28m D. 30m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是由個棱長為的小正方體組合成的簡單幾何體.

該幾何體的主視圖如圖所示,請在下面方格紙中分別畫出它的左視圖和俯視圖;

這個幾何體的表面積為________;

如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的俯視圖和主視圖不變,那么請在下面的網(wǎng)格中畫出添加小正方體后所得幾何體所有可能的左視圖.

查看答案和解析>>

同步練習(xí)冊答案