【題目】如圖,丁軒同學(xué)在晚上由路燈AC走向路燈BD,當(dāng)他走到點(diǎn)P時(shí),發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當(dāng)他向前再步行20m到達(dá)Q點(diǎn)時(shí),發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學(xué)的身高是1.5m,兩個(gè)路燈的高度都是9m,則兩路燈之間的距離是( 。
A. 24m B. 25m C. 28m D. 30m
【答案】D
【解析】由題意可得:EP∥BD,所以△AEP∽△ADB,所以,因?yàn)?/span>EP=1.5,BD=9,所以,解得:AP=5,因?yàn)?/span>AP=BQ,PQ=20,所以AB=AP+BQ+PQ=5+5+20=30,故選D.
點(diǎn)睛:本題主要考查相似三角形的對(duì)應(yīng)邊成比例在解決實(shí)際問題中的應(yīng)用,應(yīng)用相似三角形可以間接地計(jì)算一些不易直接測(cè)量的物體的高度和寬度,解題時(shí)關(guān)鍵是找出相似三角形,然后根據(jù)對(duì)應(yīng)邊成比例列出方程,建立適當(dāng)?shù)臄?shù)學(xué)模型來解決問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,點(diǎn)D在BC上,連接AD,點(diǎn)E、F分別在AD、AB上,連接DF,且滿足∠DFE=∠C,∠1+∠2=180°.求證:∠CAB=∠DFB.
解:∵∠1+∠2=180° (已知)
∵∠DEF+∠2=180° ( )
∴∠1=∠DEF ( )
∴FE∥BC ( )
∴∠EFD= ( )
又 ∵∠DFE=∠C(已知)
∴ =
∴DF∥AC
∴∠CAB=∠DFB ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)如圖,已知拋物線y=x2+bx+c經(jīng)過A(-1,0),B(3,0)兩點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)當(dāng)0<x<3時(shí),求y的取值范圍;
(3)點(diǎn)P為拋物線上一點(diǎn),若S△PAB=10,求出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AFD=∠1,AC∥DE.
(1)試說明:DF∥BC;
(2)若∠1=68°,DF平分∠ADE,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】金庸先生筆下的“五岳劍派”就是在以下五大名山中:
山名 | “東岳泰山” | “西岳華山” | “南岳衡山” | “北岳恒山” | “中岳嵩山” |
海拔(米) | 1545 | 2155 | 1300 | 2016 | 1491 |
若想根據(jù)表中數(shù)據(jù)繪制統(tǒng)計(jì)圖,以便更清楚的比較這五座山的高度,最合適的是( )
A.扇形統(tǒng)計(jì)圖B.折線統(tǒng)計(jì)圖C.條形統(tǒng)計(jì)圖D.以上都可以
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人同時(shí)同地沿同一路線開始攀登一座600米高的山,甲的攀登速度是乙的1.2倍,他比乙早20分鐘到達(dá)頂峰.甲乙兩人的攀登速度各是多少?如果山高為米,甲的攀登速度是乙的倍,并比乙早分鐘到達(dá)頂峰,則兩人的攀登速度各是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com