【題目】如圖,在△ABC中,按以下步驟作圖:

①以B為圓心,任意長為半徑作弧,交AB于D,交BC于E;

②分別以D,E為圓心,以大于DE的同樣長為半徑作弧,兩弧交于點(diǎn)F;

③作射線BFACG.

如果BG=CG,∠A=60°,那么∠ACB的度數(shù)為____________

【答案】40°

【解析】

由作圖可知,BG平分∠ABC,得到∠ABG=CBG,由等邊對(duì)等角得到∠CBG=BCG,再由三角形內(nèi)角和定理即可得到結(jié)論.

由作圖可知,BG平分∠ABC,∴∠ABG=CBG

BG=CG,∴∠CBG=BCG

∵∠A+ACB +CBA=180°,∴∠A+3ACB =180°,∴60°+3ACB =180°,∴∠ACB =40°.

故答案為:40°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的坐標(biāo)為A(1,2),B(4,1),C(2,4).

(1)在圖中畫出△ABC關(guān)于y軸對(duì)稱的圖形△A’B’C’;

(2)在圖中x軸上作出一點(diǎn)P,使PA+PB的值最;并寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(88),將正方形ABCO繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEFED交線段AB于點(diǎn)G,ED的延長線交線段OA于點(diǎn)H,連CH、CG

(1)求證:△CBG≌△CDG

(2)求∠HCG的度數(shù);判斷線段HG、OH、BG的數(shù)量關(guān)系,并說明理由;

(3)連結(jié)BDDA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過程中,四邊形AEBD能否為矩形?如果能,請(qǐng)求出點(diǎn)H的坐標(biāo);如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù) 的圖象上有一組點(diǎn)B1,B2,…,Bn,它們的橫坐標(biāo)依次增加1,且點(diǎn)B1橫坐標(biāo)為1.“①,②,③…”分別表示如圖所示的三角形的面積,記S1=①-②,S2=②-③,…,則S7的值為 ,S1+S2+…+Sn= (用含n的式子表示),.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 中,正比例函數(shù) 與反比例函數(shù) 的圖象交于A,B兩點(diǎn),點(diǎn)A的橫坐標(biāo)為2,AC⊥x軸于點(diǎn)C,連接BC.

(1)求反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)P是反比例函數(shù) 圖象上的一點(diǎn),且滿足△OPC的面積是△ABC面積的一半,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們將能完全覆蓋某平面圖形的最小圓稱為該平面圖形的最小覆蓋圓.例如線段 的最小覆蓋圓就是以線段 為直徑的圓.
(1)請(qǐng)分別作出圖①中兩個(gè)三角形的最小覆蓋圓(要求用尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)三角形的最小覆蓋圓有何規(guī)律?請(qǐng)直接寫出你所得到的結(jié)論(不要求證明);
(3)某城市有四個(gè)小區(qū) (其位置如圖②所示),現(xiàn)擬建一個(gè)手機(jī)信號(hào)基站,為了使這四個(gè)小區(qū)居民的手機(jī)都能有信號(hào),且使基站所需發(fā)射功率最。ň嚯x越小,所需功率越。,此基站應(yīng)建在何處?請(qǐng)寫出你的結(jié)論并說明研究思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)活動(dòng)課上,老師提出了一個(gè)問題,希望同學(xué)們進(jìn)行探究.
在平面直角坐標(biāo)系中,若一次函數(shù) 的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù) 的圖象交于C、D兩點(diǎn),則AD和BC有怎樣的數(shù)量關(guān)系?
同學(xué)們通過合作討論,逐漸完成了對(duì)問題的探究.

(1)小勇說:我們可以從特殊入手,取 進(jìn)行研究(如圖①),此時(shí)我發(fā)現(xiàn)AD=BC.
小攀說:在圖①中,分別從點(diǎn)C、D兩點(diǎn)向兩條坐標(biāo)軸作垂線,根據(jù)所學(xué)知識(shí)可以知道有兩個(gè)圖形的面積是相等的,并能求出確定的值,而且在圖②中,此時(shí) ,這一結(jié)論仍然成立,即 的面積= 的面積,此面積的值為
小高說:我還發(fā)現(xiàn),在圖①或圖②中連接某兩個(gè)已知點(diǎn),得到的線段與AD和BC都相等,這條線段是
請(qǐng)完成以上填空;
(2)請(qǐng)結(jié)合以上三位同學(xué)的討論,對(duì)圖②所示的情況下,證明AD=BC;
小峰突然提出一個(gè)問題:通過剛才的證明,我們可以知道當(dāng)直線與雙曲線的兩個(gè)交點(diǎn)都在第一象限時(shí), 總是成立的,但我發(fā)現(xiàn)當(dāng)k的取值不同時(shí),這兩個(gè)交點(diǎn)有可能在不同象限,結(jié)論還成立嗎?
(3)請(qǐng)你結(jié)合小峰提出的問題,在圖③中畫出示意圖,并判斷結(jié)論是否成立.若成立,請(qǐng)寫出證明過程;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強(qiáng)家有一塊三角形菜地,量得兩邊長分別為,,第三邊上的高為.請(qǐng)你幫小強(qiáng)計(jì)算這塊菜地的面積.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)出發(fā),按向上.向右.向下.向右的方向依次平移,每次移動(dòng)一個(gè)單位,得到(0,1),(1,1),(1,0),(2,0),…那么點(diǎn)的坐標(biāo)為__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案