【題目】已知二次函數(shù)的圖象經(jīng)過點,對稱軸是經(jīng)過且平行于軸的直線.

、的值;

如圖,一次函數(shù)的圖象經(jīng)過點,與軸相交于點,與二次函數(shù)的圖象相交于另一點,點在點的右側(cè),,求一次函數(shù)的表達(dá)式.

【答案】(1)m=2,n=-2;(2)

【解析】

(1)利用對稱軸公式求得,把,代入二次函數(shù)得出,進(jìn)而就可求得;

(2)根據(jù)(1)得出二次函數(shù)的解析式,根據(jù)已知條件,利用平行線分線段成比例定理求得B的縱坐標(biāo),代入二次函數(shù)的解析式中求得B的坐標(biāo),然后利用待定系數(shù)法就可求得一次函數(shù)的表達(dá)式.

(1)∵對稱軸是經(jīng)過且平行于軸的直線,

,

∵二次函數(shù)的圖象經(jīng)過點

,得出

;

,

∴二次函數(shù)為,

軸于,軸于,則,

,

,

,

,

的縱坐標(biāo)為,

代入二次函數(shù)為得,,

解得,(舍去),

,解得,

∴一次函數(shù)的表達(dá)式為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線分別與軸、軸交于點、,點、分別在軸、軸上,且,,將繞原點順時針轉(zhuǎn)動一周,當(dāng)與直線平行時點的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一幅長,寬的風(fēng)景畫的四周外圍鑲上一條寬度相同的金色紙邊,制成一幅掛圖,如果要求風(fēng)景畫的面積是整個掛圖的.若設(shè)金色紙邊的寬為.根據(jù)題意列方程,并整理得(

A. x2-65x+350=0 B. x2+65x-350=0 C. x2+65x-225=0 D. x2-65x+225=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中,,分別是的中點,上的點,連接、,若,,,則圖中陰影部分的面積為( )

A. 1cm2 B. 1.5cm2 C. 2cm2 D. 3cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2﹣bx+c交x軸于點A(1,0),交y軸于點B,對稱軸是x=2.

(1)求拋物線的解析式;

(2)點P是拋物線對稱軸上的一個動點,是否存在點P,使PAB的周長最?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A4,0)、點B0,4),過原點的直線L交直線AB于點P.

1)∠BAO的度數(shù)為 ,AOB的面積為

2)當(dāng)直線l的解析式為y=3x時,求AOP的面積;

3)當(dāng)時,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在矩形中,,,兩條對角線相交于點.以、為鄰邊作第個平行四邊形,對角線相交于點;再以為鄰邊作第個平行四邊形,對角線相交于點;再以、為鄰邊作第個平行四邊形依此類推.

求矩形的面積;

求第個平行四邊形,第個平行四邊形和第個平行四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠C=50°,∠B=D=90°,E,F分別是BCDC上的點,當(dāng)△AEF的周長最小時,∠EAF=________度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形是菱形,是正三角形,、分別在、上,且,則____度.

查看答案和解析>>

同步練習(xí)冊答案